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For the exceptional Lie algebra E, minimal SO(3) tensor operator realizations are constructed
which correspond to the maximal decomposition of E; in the respective chains E; D F, D SO(3),
E,DOSU(3)® G,DS0O(3) ® SO(3), EsDF,D80(3} & G, DSO(3) ® SO(3), E, D Sp(8) DSO(3), and
E,DG,D80(3). Two particular realizations are shown to provide a basis in which certain

structural zeros of Racah’s 6/-symbol can be explained.

PACS numbers: 02.20. + b, 03.65.Fd

I. INTRODUCTION

From the observation that the standard SO(3) tensor
formulation of the algebra G, exhibits the nontrivial vanish-
ing of a 6j-coefficient, it has been suggested by Biedenharn
and Louck’ that realizations of the other exceptional Lie
algebras might as well provide bases for explaining struc-
tural zeros. In two previous papers> the present authors
have established tensor operator realizations of the algebra
F, from which, taking into consideration Regge symmetries,
11 such zeros followed. In view of enlarging considerably the
list of structural zeros that can be explained similarly, the in
rank next higher exceptional Lie algebra E is made the ob-
ject of an analogous investigation in the present paper.

The method which we adopt here for the construction
of tensor operator realizations has been originally described
by Wadzinski.* In short, it consists in selecting for the alge-
bra G under consideration a particular chain of maximal
semisimple subalgebras ending at an SO(3) algebra or an out-
er product of SO(3) algebras. In that chain the consecutive
decomposition of the adjoint irrep of G produces SO(3) labels
which correspond to the rank labels & of the SO(3) tensors
that can realize the algebra. Similarly the decomposition of
the lowest-dimensional representation of G provides the
numbers / which label the representation spaces on which
the SO(3) tensors act. Hence, in the notation of Judd,’ v* (/'/)
denotes an SO(3) tensor operator of rank k£ which maps a
(2] + 1)-dimensional representation spaceintoa(2/’ + 1)-di-
mensional one. Clearly, /, /', and k can have nonnegative
integer or half-odd integer values with the restriction, how-
ever, that/ + /' + k is an integer. A realization {G *} of the
algebra G in terms of the SO(3) tensor operators is then
straightforwardly obtained from the fact that G closes under
commutation and on using the standard commutation prop-
erties of the tensors.>™> Also for each of the subalgebras in the
proposed chain a realization is found as a subset of {G *}. It
is then a matter of systematic investigation to verify whether
structural zeros of the 6/-symbol can be explained within the
realization. From branching rule tables® one readily learns
that the exceptional Lie algebras are the best candidates for
such explanations.

Throughout the paper we adopt the notations and con-
ventions of Ref. 3. In particular unlike Wadzinski* and
Judd® we do not use spectroscopical notation.
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Il. TENSOR OPERATOR REALIZATION FROM THE
CHAIN £DF,D80(3)

From the branching rule tables such as the ones estab-
lished by McKay and Patera,® it is readily verified that along
the chain E; 2 F,DSO(3) of maximal subalgebras the 78-di-
mensional adjoint irrep of E; decomposes into the SO(3) ir-
reps (1), (4), (5), (7), (8), and (11). It should be made clear that
we label the SO(3) irreps by half the number McKay and
Patera use. Similarly, the 27-dimensional irrep of E,, the
lowest-dimensional one, reduces into the SO(3) irreps (0), (4),
and (8). Applying the construction algorithm described ear-
lier,>* we finally arrive at the following tensor operator real-
ization of E:

G| =v!(44) + ()"0} (8,8),

G, =v;(44)+ ()" 2vg(&f%)
+ (= 1)°2(19)"2[v](4,8) + v} (8,4)],
G =v](4,4) — (331)"/%](8,8)
+ (= 1)%(Z8) 2 [0](4,8) + v](8,4)],
G, = v,'(8,8) — (— 1)7(3)" > [v;'(4.8) + v,'(8,:4)],
G =vi(4,4) — (322)/%2(8,8)
+ (= 1)) 2 [05(4.8) + v (8,4)]

+ (= P33T [634,0) + v (04)],
G =v3(4.4) — () 03(8,8)

— (= 1%(5)" 2 [05(4,8) + v;(8,4)]
+(— 17~ #(26/3/55)[v3(8,0) + vE(0,8)]- (2.1)

Herein a is a free parameter. Clearly {G '} forms the SO(3)
subalgebra, whereas the subset {G ',G5,G7,G '} realizes the
maximal F, subalgebra. Apart from irrelevant scale factors
the latter subset is also in conformity with previous results
on F, (Ref. 2). Hence, when using (2.1) in order to try to
explain structural zeros of the 6j-symbol we shall not insist
again on those emerging from the realization of F, contained
in (2.1) on its own. Ignoring momentarily Regge symmetry
operations there is, however, one more structural zero that is
related to the realization (2.1) of E,. Indeed, let us consider a
commutator of the type [G '*,G ®], which at first sight should
give origin to a term proportional to G °. Since this type of
generator is obviously missing in the E, algebra (2.1) all
terms in the commutator which could contribute to G ® either
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vanish or cancel each other out. Effectively, aterm v, , ,(4,4)
could only be generated from the commutators [v}'(4,8),
v;(8,4)] and [v;,‘(8,4),v3 (4,8)], but since the contributions

from both are equal and proportional to

{1 1 8 6]

4 4 8)

the latter 6j-coefficient has to vanish. On the other hand,
terms such as vg. + ¢18,8) are not generated proportional with
asingle 6j-coefficient and therefore their absence gives rise to
a relation between different 6j-coefficients. In fact, a detailed
investigation of {2.1) leads to the conclusion that the above-
mentioned zero of the 6j-symbol is the only one that can be
explained in the present context. However, due to Regge
symmetry this structural zero generates five more different
ones, which are collected all together in Table 1.

Ill. THE CHAINS £4DSU(3) @ G, DS0(3)  SO(3) AND
E¢DFaDS0(3) @ G, DSO(3) ® SO(3)

From branching rule tables® we learn that the E, ad-
joint irrep (respectively, the lowest-dimensional irrep) de-
composes in both chains mentioned in the title into the same
SO(3) & SO(3) irreps, namely (0;1), {1;0), (2;3), (0;5), {2;0), and

TABLE L. Structural zeros of the 6j-symbol {} 7

(1;3) [respectively, {1;3), (2;0), and {0;0)}. Application of the
basic formulas established in Ref. 3 then leads in a straight-
forward way to the following SO(3) ® SO(3) tensor operator
realization of Ej;

Gl =2 (1,1))(3,3),
G = vl (1,1113(3,3)
+ () %vg (2,2)05(0,0),
G2 =i (1,1)p3(3,3)
+ [(— 021 {2 (1,23(3,0)
+ 02 (2,1)03(0,3)],
G =10(1,1)v3(3,3),
G20 = v2(1,119(3,3)
— (/312 (2,202{0,0)
+ (= 12221 [0 (2,015(0,0)
+ vZ%(0,2)9(0,0)],
Gl =v,(1,1))(3,3)
— (= (@)Y [vy (1,2)5(3,0)

’,“ } which can be explained from realizations of the exceptional Lie algebras G,, F,, and E. The zeros

marked with an © are directly explained in the chains whereas the others follow from Regge symmetry.

i I /3 L L I3 Algebra—subalgebra chain
o 5 5 3 3 3 3
5 4 4 3 4 2 G,2S0(3)
o 11 11 3 4 4 8
11 10 2 4 5 9
o 11 11 9 8 4 8
1 10 10 4 9 7 F,OS0(3)
12 11 8 N 8 7
12 10 9 S 9 6
13 10 8 6 7 7
13 9 9 6 8 6
o 3 2 2 ! 2 2 F,250(3) @ G, >S0(3) @ SO(3)
° g 3 7 4 4 5 F,>S0(3) & Sp(6) DSO(3} & SO(3)
u 5 : 2 3 4
o 11 8 6 4 4 8
11 9 5 4 S 7
3 » 5 ] y 7 E,DF,2S0(3)
¥ ¥ 4 3 ¥ 8
Y 5 6 Yy 3 8
¥ 9 1 3 5 Y
o 7 6 5 4 6 4
7 ¥ 3 4 Y 3
¥ b 5 3 3 4
¥ 6 H 3 5 3
¥ 6 Y Y 3 Y
6 6 6 6 5 3
o 6 6 6 5 4 3 E,DSp(8) 2SO(3)
7 6 5 4 4 4
7 Y Y 4 3 i
¥ ¥ 5 H i 4
¥ 6 y ] 5 1
¥ 6 ) 3 3 3
o 9 6 4 2 5 5
8 6 5 1 5 6
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+ 0% (2,1)03(0,3)]
— (= 12+ 22/3)[ v} (1,00(3,0)
+ 0L (0,1)3(0,3)]. (3.1)

Again a and B are free parameters. It is not very difficult to
verify that {G %'{u{ G "] realizes the algebra of

SO(3) ® SO(3), {G'°,G*°}u{ G *!,G**} the algebra of
SU(3) ® G,, {G "°}Ju{ G *',G**} the algebra of SO(3) ® G,,
and {G '°,G%',G%°,G*?] the algebra F,. A systematic in-
vestigation of the realization (3.1) shows that unfortunately
the only structural zeros which can be explained from it are
those already found from the partial chains G, DSO(3) and
F,280(3) @ G,0S0(3) ® SO(3).

IV. THE CHAINS £ D Sp(8) D SO(3) AND £ G2DS0(3)

Branching rule tables® show that the adjoint and lowest
dimensional irrep of E, in both chains decompose into the
same SO(3) irreps, namely into (1), (2), (3), (4), (5), {5), (7), and
(8), and into (2}, (4), and (6), respectively. Clearly the E real-
ization will contain two independent types of G ° generators
which we shall distinguish by a supplementary label.
Straightforward calculations end up with the following
SO(3) tensor operator realization of E:

Gy =v,(2,2) + V6u}(4,4) + (%)"/%v}(6,6),
G =v;(2.2) - () *v;(44)
+ A 25 (6,6)
— (— 1)%4/33)[v2(2,4) + v2(4,2)]
+(— 1) PHEY " [v74.6) + 3 (6.4]],
G} =v}(2,2) + (57/11J11)} (4,4)
— %39"20,(6,6)
+ (= 1)72(8) 2 [v3(2,4) + v}(4,2)]
+(— 1)72(55)" " [v}(4,6) + v2(6,4)],
G =v;(2.2) = 3()'"vg(44) — T(34)"/%0}(6,6)
— (= 1)3/6 [v}(2,4) + v}(4.2)]
+ (= 1P (%) [v3(4,6) + v2(6,4)]
— (= 1) A1) [03(2,6) + v2(6,2)],
G 3 = v;(4,4) — (J119/3)v3(6,6)
+ (= 17(%) 2 [v](2,4) + v} (4,2)]
= (= 1)%(9)"*[v;(4.6) + v;(6,4)]
+ (= 1) 532 [05(2,6) + v7(6,2)],
G’ =(—1)°[vp(2.4) ~ v;(4.2]]
— (= 1)P(143/7)[ v} (4,6)
— (= 1)+ P(/39/7)[v3(2,6) — v(6,2)],
G =v,(4,4) + (33)"/%0](6,6)
— (= 1)%/51[v](4,6) + v](6,4)]

—v;(6,4)]
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+ (= 17+ PUE)V2[0](2,6) + v](6,2)],

GE =u3(4,4) — (13)/25(6,6)
— (= 1)%3)" [ v3(4,6) + v5(6,4)]
—(~ 1= PL2[08(2,6) + vE(6,2)]. (4.1)

Obviously we could replace G ** and G *® by any two inde-
pendent linear combinations of them. However, the choice
made in (4.1) is such that G ** is completely symmetric and
G ** completely antisymmetric with respect to the mixed
type tensor operators. Moreover, this particular choice im-
plies that the subset {G ',G*,G*,G} is a realization of the
maximal Sp(8) subalgebra. On the other hand, it turns out
that there exists no real combination of G ** and G ® which,
when added to G ', spans the maximal G, subalgebra. This
has to do with the fact already demonstrated by Dynkin’
that there is no real {compact) form of G, comprised in a real
form of E,. Hence the algebra-maximal subalgebra inclusion
E¢D G, should be understood in terms of the classical (com-
plex) Lie algebras alone™® and becomes invalid when making
the restriction to the real domain. Since all the tensor opera-
tor realizations which we have obtained so far are real, we
have used for the algebras the notation of the real matrix
groups by which they are generated. Nonetheless as a conse-
quence of the previous remarks we should be able to realize
from (4.1) the maximal G, subalgebra contained in E, by
taking a complex combination of G ** and G **. Indeed, actu-
al calculations demonstrate that G, is generated from the set
{G',G* + AG*}, whereby A = i€7,/385/4/78 and € can be
freely assigned the value + 1 or — 1. There exists, however,
also a real realization of G, on the same representation space,
of which it can be shown that it is nothing but a subset of a
nonminimal realization of SO(7) which has the form

Gl 201(22 +\/5v‘(44)+ 91)1/2 1(66)
G} =v3(2,2) + (15/4/11)}(4,4)
7( )1/2U3(6 6)

+ (= 1)°(/33/4)[v](2,4) + v} (4,2)]
+ (= 1732 [v3(4,6) + v;(6,4)],
> =0.(4,4) — (119/3) 3(6,6)

— (= 1)°4(9)' *[v3(2,4) + v3(4,2)]

+ (= 1)P2(%)"?[03(4,6) + v}(6,4)]

— (= 1"+ 2(38)12[02(2,6) + v(6,2)]- 4.2)
It is readily verified that the nonminimal realization (4.2) is
not suited for explaining structural zeros. On the other hand
the realization (4.1) of E, offers a rich framework for such
explanations. More precisely, the complete antisymmetric
generators G ** create the best opportunities to be exploited
in connection with the missing of rank 6 and rank 9 tensor
operators. Let us first analyze the commutator [G%%,G 7],
which could give rise to a term proportional to v%4,4). But
this term is absent and could only have been generated from

[v°(4,6),07(6,4)] and [v°(6,4),07(4,6)], which produce exactly
the same v%(4,4) coefficient, since v°(4,6) and v°(6,4) have op-
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posite sign factorsin G ** and since 5 + 7 + 6is even. Hence,
the common coefficient which is proportional to

5 7 6]
[4 4 6
should vanish, which explains the zero value of the latter 6j-
coefficient. On account of Regge symmetries this structural
zero gives rise to five more zeros of the 6j-symbol which are

collected in Table I. By a very similar argument one next
succeeds in explaining the structural zero

[5 3 6] —0
6 6 4
from the commutator [G*%,G°].

Finally, we consider the commutator {G **,G ** ] in or-
der to observe that a term of the type v®(4,6) could only origi-
nate from the commutators [1v°(4,2),0°(2,6)] and
[v°(2,6),0°(4,2)] contained in it. The sum 5 + 5 + 9 being odd

the only way to come out with a vanishing v°(4,6) term is the
zero value of

{559]
4 6 2[

As can be verified in Table I this zero is generic for one more
structural zero.

Making the final counts we conclude that the chain
E,DSp(8) DSO(3) on its own allows a minimal realization of
E, which indirectly provides an explanation of 14 structural
zeros of the 6j-symbol.
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V. CONCLUSIONS

Only a restricted number of minimal realizations of E,
have been established in the present paper. Indeed, there
exist many other chains starting at E, and ending with one or
more SO(3) algebras, but the corresponding reduction pat-
terns show levels of degeneracy which become too high for
explaining structural zeros. Nonetheless we succeeded here
to extend largely the list of zeros arising from G, and F,
realizations. This fact suggests that many more zeros will
become explained in £, and E,, and we hope to report on
them soon.
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The eigenstates of three particles moving in one dimension are classified according to the S, plus
parity group. The ordering of the ground state S, band is given for a fairly general class of
potentials. Sufficient conditions are given both for existence and nonexistence of bound states of a

given symmetry.

PACS numbers: 02.20. + b, 03.65.Ge, 21.40. +d

. INTRODUCTION

In this paper we investigate some general properties of
the bound-state spectrum of three identical particles inter-
acting via two-body potential and moving in one dimension.

In Sec. II the eigenfunctions are classified according to
their transformation properties under parity and the group
S;. Using these criteria the states can be grouped in two
bands (positive and negative partity) of four states. As it
should, each set of four eigenfunctions of a band provides a
basis for the irreducible representations of the group S,: two
one dimensional (one compeltely symmetric, one completely
antisymmetric) and one two dimensional (of mixed symme-
try).

Sufficient conditions for the existence of the lowest en-
ergy state of each symmetry type are given in Sec. III. It
results that the totally symmetric state of positive parity is
always bound if the two-body potential is attractive. There
are sufficient conditions for the existence of the lowest ener-
gy state of the other symmetry types and it is possible to give
the ordering of the ground state band (of positive parity) for a
large class of potentials.

Finally in Sec. IV we give sufficient conditions for the
unboundness of the lowest-energy, negative-parity, totally
symmetric, and totally antisymmetric states. Sufficient con-
ditions for the unboundness of the first excited totally sym-
metric state of positive parity are also given.

The tools used as the k-harmonics method' (also called
hyperspherical harmonics), the Hall and Post* and Hall?
theorems, and the comparison theorem.*

Il. THE S; BANDS

We consider the time-independent Schrédinger equa-
tion for three identical particles moving in one dimension
and interacting via a two-body attractive potential
V(lx; —x,|). As it is well known, a three-body (identical
particles) problem in one dimension can be reduced to a one-
body problem in two dimensions. Using the “hyperspherical
coordinates,” ' the hyperradius p and the hyperangle 6, de-
fined by

n=pcosf &E=psinf, 0<O<«2mw, (1)
where 77 and £ are the Jacobi coordinates

7= (1/\/2)(?‘1 — X5 (2a)
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5= m [(x; + x,3)/2 — x5] (2b)
R =(x, 4+ Xx,+ x3)/{3=0, (2¢)

the Schrodinger equation becomes (using energy in units of
#/2m)

19 9 1 &
2,2 0

P appap 7 367 ¥ p.0)

+ V(p,0) ¥ p,0)=Edp,0), (3)
where

Vip0) =V (Zpleos b))
+ V({2 p|cos (6 +7/3)|)

+ V (2 plcos (8 + 2m/3)]) . (4)
If we now use the (k-harmonics) expansion
= Rip) &*°
‘/’(Pﬂ)zk:Z_w p1/2 (277.)1/2 ’ (5)

we get the following infinite set of coupled ordinary differen-
tial equations:

_ [:;2 _(kz—%)/%] Rilp)+ 3 Ve (oI, p)
=ER,(p), (6)

where

21
Velp) = [ e revipe)do. )

The parity operator /T and the permutation operators
P, P, and P,; leave p invariant and transform € onto
7+ 60, 70, 57/3 — 6, and 7/3 — 6, respectively.

From parity invariance of V' ( p,8 ) (4) itimmediately fol-
lows that

Vi «(p)=0, fork'— kodd, (8a)
Vk'—k(p)=Vk—k‘(p)zV—lk’—k)(p)' (8b)

Using the invariance of V' ( p,0 ) under P,,, P,;, and P,;
we get

6 /3 )
ET—f ek =k8 ¥ (p.0)do,
0
for k' — k = 6n, n integer

from — « to + o,

Vi _x(p)=

0, otherwise.
9)
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Due to properties (8a) and (9) the system (6) splits into
six infinite sets of k-values

keven: 6n,2 4 6n,and — 2 + 6n,

(10)
kodd: 3+6n,1+6n,and — 1+ 6n.

Using property (8b) it can be easily verified that the
solutions of the system of equations (6) can be chosen such
that

R _(p)= +R.(p). (11)

We shall denote by R £(p) the solutions such that
R _,.(p)=R,(p) and by R?(p) the solutions such that
R_,= —Rip)

The eigenfunctions of (3) given by expansion (5) can now
be classified. Positive parity corresponds to & even and nega-
tive parity to kK odd. The totally symmetric eigenfunction of
positive parity is given by the set 6n, the totally antisymme-
tric eigenfunction is given by the set 6n (1 5£0), and the mixed
symmetry eigenfunctions are given by the set 2 4 6n (or

— 2 + 6n). Thus, the positive parity ground-state band is
given by

s Relp)
st (p,0) = o )1/2 :Zx P cos 6nf,  (12a)
s Ra(p)

() p,f) = — ——sin6nd,  (12b
¢A (p ) (277_)1/2 L p1/2 n ( )
1 it R2+6n(p)

Y (p0) = (2m)'7? n:Z . pP
X exp[i(2 + 6n)0] and c.c. (12¢)

Astheset — 2 + 6n equals minus the set 2 + 6n, due to
property (11) the eigenfunctions given by the set — 2 4- 6n
differ from (12c) only by a phase factor.

The negative parity totally symmetric and totally anti-
symmetric eigenfunctions are given by set 3 + 6n and the
mixed symmetry eigenfunctions are given by the set 1 4 6n
(or — 1 4 6n). The negative parity ground-state band is then
given by

i 3+6n(p) Sln(3 + 6n)9,

(P 0) —W 1/2
{13a)
¥ (p.0) =(_2—7r%? Mi R 3+,(;2(p) cos(3 + 6n)0,
- (13b)
Yhe (p0) =“(2—771)T/3' i Hf/", (p) exp[i(1 + 6n)0 ]
and c.c.

(13¢)

(Asin the case of the set — 2 + 6n, the eigenfunctions given
by the set — 1 + 6r differ from those given by 1 + 61 only
by a phase factor.)

The transformation properties of the mixed symmetry
eigenfunctions 7' and (¢,; ') * can be easily verified using
the complex two-dimension irreducible representation of the
group .S; introduced by Simonov.'

Concluding this section we examine the order* of the
states of the ground-state S; band. The lowest state is
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¥ p,0) since this state has no centrifugal barrier (k = 0).
Due to the centrifugal barrier the other symmetry states
should occur in the following order [see Eq. (6)]: ¥}y (0,0

Wi (p,60), ¥s,)(p,0) (apparently degenerate), and ﬁnally
#,"(p,0) . The degeneracy of ¢, p,8) is easily shown to
be only apparent (see the Appendix). Other results concern-
ing the ordering of the states will be presented in Sec. IV.

HI. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF
THE LOWEST ENERGY STATE OF EACH SYMMETRY
TYPE

Truncation of expansions (12} and (13) provides vari-
ational functions and consequently an upper bound for the
lowest energy state of each symmetry type. Keeping a single
term in the expansion (12) and (13) the corresponding system
of differential equations (6) for each symmetry type will be
reduced to a single equation. The truncated equation is

H R, (p)=ER\(p), (14)
where
d* 1\ 1
H, = — +(k2~——)—— W.p),
k dp2 4 p2+ k(p)
with W {p) =V, for k = 1,2, and 6, W,(p) =V, — V; for

the k=3 odd solution (associated with 5 '), and
Wil p) = V(, + V, for the k =3 even solution (associated
with ¢, ). Since the truncated equation (14) provides vari-
ational upper bounds for the system (6) if it has a bound state
so will the system (6).

In principle it is not difficult to find sufficient condi-
tions for the existence of a bound state of a given symmetry
from Eq. (14). In fact, Hunziker’s theorem>* states that for a
locally square integrable two-body potential vanishing at in-
finity, the continuum of a three-particle system starts at the
ground state energy E 9, of the two-particle Hamiltonian

2p)]¢(p)=E‘;B Up), (15)

where p = (1/4/2)(x, — x,) and where we have measured en-
ergy in units of #°/2m.

In fact, according to Hunziker’s theorem with statis-
tics,® the continuum threshold for the totally symmetric
states and the mixed symmetry states is given by the ground
state energy E 5, of (15) and for the completely antisymme-
tric states the continuum threshold is given by the first excit-
ed state energy E ;, of (15).

Therefore to find a sufficient condition for the existence
of a bound state of a given symmetry we have to find a suffi-
cient condition for Eq. (14) to have a bound state with energy
less than the appropriate continuum threshold. This in turn
can be reduced, by the Rayleigh-Ritz principle, to finding a
trial function & ( p)suchthat (¢,H, ¢ ) < E; 5,0 ), where E ,p
is the appropriate continuum threshold.

Taking Simon’s choice,® & ( p) = p®e ~#/*, we obtain

(@ +k?— Y 2a — 1)—ar(2a)+,;r(2a+ 1)

+ [ dope Wilp) Bl e+ 1),
(6]

(16)
with a > 1 if k #£0.
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For k = O the limit @] exists giving the condition

> 1
[Teroviprdp<ins - (17)
0

This result is a weaker version of a previous result obtained
by the authors’ that guarantees the existence of at least one
bound state for N-particle systems in one and two dimen-
sions when the two-body interaction is globally attractive.
For k #£0 a simple condition is obtained by taking o = 1.

[[aperomipcrmn—(3+57). 9
0

Alternatively, taking d(p)= pk +i
Xexp( — [ — E;5 p) as the trial wave function, the suffi-
cient condition for the existence of at least one bound state of
symmetry k is given by

[T e (= 2= ) Wialplde
(]

___(,;:*__12)__ R 19
() -

In Ref. 8 we show that simple sufficient conditions are
obtained by using as the trial function the regular and irregu-
lar solutions of the modified Helmholtz equation matched at
an arbitrary point R (Calogero’s sufficient conditions® are
obtained in this way). In the present case this type of trial
wave function gives the following awkward condition for the
existence of a bound state with energy < — a*:

R p 2k 4+ 1
[ (8w
oo R 2k — 1
*RL(Z) e 2P W,( p) dp

R !
< — 2k e~2aR . zaJ-O (kR'tkz) e—Zappzk dp

+2aL (k—%)RZ"e_z""p“zkdp. (20)

IV. SUFFICIENT CONDITIONS FOR THE
NONEXISTENCE OF BOUND STATES OF A GIVEN
SYMMETRY

We shall use in this section two theorems due to Hall
and Post” and Hall,” respectively.

The two theorems refer to a system of V particles inter-
acting via a two-body potential ¥{r, — r ). The translation-
invariant Hamiltonian for such a system is

N { B ﬁ’.’
2mN

H:

(V. — V,j)2 +V(r,—r)!.
(21)
Theorem of Hall-Post: A lower bound for the energy of
the completely symmetric {antisymmetric) states of system

{21} is given by the ground state (first excited state) of the
two-body Hamiltonian

Hpp = — (N )[(H#/2m) V2 —(N 2V (\2p) ],
{22)

i<j=1

where p = (1/42) (r, —r,).

2591 J. Math. Phys., Vol. 25, No. 9, September 1984

The Hall-Post theorem is valid in any dimension. So to
apply it to the case of three particles moving in one dimen-
sion, taking N = 3 and using energy in units of #°/2m we
have to consider the two-body problem

2
}/HP=_2§-+3V(\/§,)). (23)
D

2

Thus a direct application of Hall-Post theorem obtains the
following result.
R If the Hamiltonian given by Eq. (23) has a single
bound state then the state ¢!, is unbound and so is ¢!;*.
Theorem of Hall: Given a system of N particles de-
scribed by the Hamiltonian (21) consider the Hamiltonian
describing the independent motion of N — 1 particles

N
Hy=> H,
i=2
a4 # N 2 1 )
“ ( ) et P @
where p, = (1/42)(r, — ).

Then, the exact energies of the completely symmetric
(antisymmetric) states of the N-body problem (21) are bound-
ed one by one by the energies of the completely symmetric
(antisymmetric) states of the Hamiltonian 77 (24).

The Hall® theorem is also valid in any dimension. So, in
the particular case of three particles moving in one dimen-
sion lower bounds for the energy spectrum are obtained by
solving the two-body problem

3 1 d?
which is obtained from (24) by setting ¥ = 3 and #/2m = 1.

Suppose now that #°; has three bound states with en-
ergies €,, €, and €, such that €, < €; <€, and (e, + €,) < 2¢,.
Then the Hall theorem tells us that a iower bound for the
state ¢ is given by 2¢, and a lower bound for the states
Y5 ) and ¢! is given by (€, + €,). Now according to Hun-
ziker’s theorem,” the continuum threshold of the symmetric
statesis E 9 and the continuum threshold of the antisymme-
tric states is E ;. So we have the following result.

R2: If ¢x+€,>E%;, ¢, ' is unbound and if
€ + €, > E}y then ¢!,/ also is unbound. Since #/!,*! is less
bound than ¢/, ' then in this last case ¢/,* ' is also unbound.

The Hall theorem also tells us that a lower bound for

‘"1 is given by (€, + €,) and a lower bound for the first
excited state of the type ¢s* is given by 2¢,. Therefore we
have the following result.

R3: M ey + €, — E}y <0 and 26, — E3, > 0 the states
¥, ¢',7), and ¥/;*' might be bound but the first excited
state of the type ¢s" will be unbound and the ground state
band will not intercept the excited state bands.

Finally we would like to comment on the finiteness or
infinitude of the bound state spectrum of our system. First
we would like to recall a theorem by Sigal'® which states that
for short-range potentials the number bound states of the N-
particle Schrodinger operator in the center-of-mass frame is
at most finite.

In our case this result follows from the Hall® theorem: if
the two-body potential has only a finite number of bound
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states then so does the Hamiltonian (25). Therefore we can
construct only a finite number of completely symmetric
(antisymmetric) lower bounds below the respective contin-
uum thresholds and due to the centrifugal barrier the num-
ber of bound states of mixed symmetry type is less than the
number of symmetric states. Therefore as a particular case of
the Sigal'® theorem we have that for short-range potentials
our three-particle system has at most a finite number of
bound states.
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APPENDIX: NONDEGENERACY OF ¢4 ) p,0) AND
¥4 p,6)

The degeneracy of /s~ !( p,6) and ¥,/ p,0 ) is shown to
be false by examining the system of differential equations (6)
for the radial vectors R §, 6,(p)and R §, 4,( p) which enter

in 1,b (13a) and ', (p,0) (13b), respectively. For
R%, ( p) the system (6) can be cast in the form
1 d d (3+ 6n)2]
— |\ F 5 n( ) + V n —n
[p ddep pE Trenlp nZO 6in' —n)

+ V6(n +n+1) ]R3+sn(P)=ER§+fm’(P)’

and for R §_ ¢, ( p) it becomes

1 d _d (3+6n)2]

—\— = F n + n — n)
[P 4 F pe S+enlp) "ZO 6l
_V6(n+n’+l]]R?+6n'(p}=ER?+6n(ao}~
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As the potential energy for R and R { are different the
states ¥ ' and ¢, will not be degenerate but for an acci-
dent. It is not possible to say the order in which they will
occur because the potential energy terms cannot be easily
compared. The only thing we can say is that for a purely
attractive interparticle potential monotonically increasing
in the interparticle distance we have the matrix elements
Vi:n <0and ¥, , 1,6 > 0and truncation of the above equa-
tionsat n = n’ = 0 provides an upper bound for the energy of
the state ¢, ' which is lower than the upper bound for the
energy of the state ¢/,
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On the classical part of the mean field dynamics for quantum lattice systems

in grand canonical representations
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For a class of discrete mean field models the limiting dynamics is investigated in the
representations of generalized grand canonical states. It is demonstrated that for a certain form of
spontaneous symmetry breakdown the W *-automorphism dynamics exhibits a uniquely
determined nontrivial classical part, which is essential for the explanation of macroscopic

quantum phenomena.

PACS numbers: 02.20. + b, 05.30.Ch, 05.70.Fh

I.INTRODUCTION

In many body physics the dynamics is sometimes for-
mulated by means of the physical Hamiltonian containing
only the microscopic energies, and sometimes by means of
the reduced Hamiltonian in which also macroscopic contact
variables are incorporated. The difference seems to be con-
sidered only a question of energy renormalization. This
point of view explains perhaps why in the C *-algebraic for-
mulation' of the BCS-model only the KMS-dynamics has
been worked out hitherto, which corresponds in virtue of the
grand canonical equilibrium state to the reduced Hamilton-
ian.?? As has been demonstrated in Ref. 4, the physical dy-
namics has in this case, however, an additional part—in
comparison to the KMS-dynamics—which acts nontrivially
on the center of the relevant algebra of observables. Thus,
only the physical dynamics are capable of explaining all of
the macroscopic quantum phenomena of superconductivi-
ty.*

In the present investigation we treat this dynamical
phenomenon for a general class of discrete molecular field
models and show that the mathematical construction of the
closure of the limiting Heisenberg generators, which origin-
ally are defined only on local observables, leads automatical-
ly to the classical parts of the physical dynamics, if certain
symmetries are spontaneously broken.

In Sec. IT we start from a converging subnet of local
grand canonical equilibrium states. The family of local sub-
traction terms in the reduced Hamiltonians with fixed con-
tact variables gives rise to an internal symmetry group acting
as automorphisms of the quasilocal algebra. To have a name
we call this the generalized gauge group. The additional clas-
sical structure terms arise if these symmetry transformations
are spontaneously broken in the limiting equilibrium state,
which would correspond to the spontaneous breaking of
gauge invariance for the BCS-model. The interesting point is
that these additional classical features can be determined in a
model independent manner. The first step to do this is the
extension of the gauge transformations to W *-automor-
phisms of the temperature-dependent GNS—von Neumann
algebra. The generator of this W *-automorphism group is
shown to contain a differential operator with respect to a
continuous variable, which labels part of the overcountably
many pure-phase-states.
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In Sec. I11, the limiting Heisenberg generator is investi-
gated starting from the immediate and weak result that the
local Heisenberg generators converge in the strong operator
topology of the temperature representation if applied to
fixed local observables. This limit defines an antisymmetric
*-derivation L £ with the local observable algebra as domain.
The o-weak closure L ? of L% exhibits the aforementioned
differential operator, if the symmetry under gauge transfor-
mations is spontaneously broken. It is investigated in which
way the image values of L # can be approached by the image
values of L . The qualitatively new features of L # in com-
parison of L2 seem to prevent in general a local approxima-
tion in any topology stronger than the o-weak one. The still
available approximation property is obtained by means of a
certain estimation, which is proved in the Appendix. Avoid-
ing the difficult use of general criteria (cf. Ref. 1, Chap. 3) we
show L # to be the generator of a o-weakly continuous W *-
automorphism group in the representation-von Neumann
algebra by explicitly constructing the dynamical transfor-
mations. A remarkable feature is the appearance of the sub-
traction terms in the thermodynamic limit of the (unsub-
tracted) physical dynamics in an intertwined manner,
dropping out only if the gauge symmetry is not spontaneous-
ly broken [cf. formula (3.15)].

In Sec. IV we treat the convergence of the local finite-
time dynamics in the infinite volume limit. The crucial point
is that in spite of the weak results on the generator conver-
gence, which prevents the application of general theorems of
semigroup theory, the convergence of the powers of the local
Heisenberg generators is under control, if these are applied
to local observables. In virtue of this result is seems still more
advantageous to use a generator method for the considered
class of long-range interacting models than to prove the con-
vergence of the finite-time translations by means of quite
general but rather indirect arguments.® For this latter prob-
lem we use here a norm-bound [namely (4.5)] for the powers
of the loal Heisenberg generators which is rather popular®
but completely derived only in Ref. 7, at least for our general
class of models. The arguments for extending convergence
for small times to convergence on the whole time axis are
also worked out in Ref. 7. In this way we arrive here at the
result that the limits of the local time translations are just the
W *-automorphisms generated by L . No dilatation prob-
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lem® arises in spite of the extreme long-range potentials and
in spite of the nontrivial classical features of the limiting
dynamics.

Altogether our construction illustrates in which way
the properties of the atomic constituents of a many-particle
system determine unambiguously also the classical features
of the dynamics, a problem which has been put forward in its
fundamental importance and discussed from several points
of view in Ref. 9.

Il. EQUILIBRIUM REPRESENTATION AND GAUGE
GROUPS

We consider a discrete quantum system, where on every
site i€Z? of a d-dimensional lattice some microscopic con-
stituents occupy states of a finite-dimensional Hilbert space
&, each of which being an exemplar of the Hilbert space 5#°
with dim /% = keN. Denoting by |4 | the cardinality of a set
Aweintroduce .¥: = {ACZ%|A | < » }, whichisadirected
set by means of the inclusion relation. With A€.Z are asso-
ciated the Hilbert space 7#°,: = ® ., #; and the algebra of
observables . ,: = # (5 ,). In &, (Where we have identi-
fied {i} with i) we select a basis {s%; a = 1---k >} in identical
manner for all / such that s’* = 5? and ||s|| = 1 for all a.
Writing 5% : = X,_, 57 we consider the following class of local
Hamiltonians:

Hy:=Sf.5 +ET§“—!s§2, Ae?, 2.1)
of mean field type, where the £, and g, are real constants.
Observe that more general interactions which are Hermitian
in the g-indices can be transformed into the diagonal form
(2.1). If, beside the temperature, other thermodynamic con-
tact variables as, e.g., some chemical potentials or the global
angular velocity, are fixed (by contacting appropriate reser-
voirs) one introduces the reduced Hamiltonians

H,.:=H, D, AcY, (2.2)

where D, = D% e/ , is the sum of the subtraction terms
with fixed contact parameters and with {H,,D,] =0, for
all Ac.Z . In the relevant cases the subtraction terms do not
destroy the invariance of the Hamiltonian under local lattice
permutations and are additive in A [cf. (2.20)].

In order to perform the thermodynamic limit we intro-
duce the quasilocal algebra

g= e, (2.3)
iez?
by means of the infinite C *-tensor product,'® which is a uni-

tal, simple, separable, antiliminary algebra with trivial cen-
ter, every nontrivial representation of which is faithful."!
After embedding the union of the localized algebras,

A= U A, (2.4)
Ae?
is a norm-dense *-subalgebra of <.
The local grand canonical equilibrium states
(Wsd )i =tr, {054}, Aed,,
(2.5)

oh:=exp(—§, —BH}),

where tr, denotes the usual unnormalized trace in #, , and
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£ 4 €R, constitute, after extension to 27, a net in the state
space () of all states on 7. Since (&) is compact in
the weak-*-topology this net has limit points from which we
select once and for ali the state «®. The separability of .o
implies that the weak-*-topology of .*’(«) is metrizable and,
hence, we may choose a subsequence of local equilibrium
states with

w-xlim 5 = 0. (2.6}

From this it follows that »” is invariant under all symmetry
operations—acting as Jordan automorphisms in &/ —which
leave all H',, Ae.?’, unchanged, especially under all finite
lattice permutations. Because the permutations act in a
strongly asymptotic abelian manner on .7, the set of all per-
mutation invariant states . *C (&) constitutes a simplex,
the extreme points of which are just the product states,
uniquely given by a density matrix p in the one-lattice-point
Hilbert space #.'” These product states are factorial and are
disjoint if the associated p’s are different. From this one con-
cludes that the unique extremal decomposition of o® within
S * coincides with the central decomposition

o’ =f,fﬂsv duf ().

Here the central measure u” on .# (&) is supported by the
weak-*-compact set .7 # (and not only pseudosupported) in
virtue of the weak-*-separability of ().

According to the spatial decomposition theory (Ref. 1,
Chap. 4.4) the central decomposition (2.7) implies a direct
integral decomposition of the GNS-triple associated with »®

(2.7)

2]

T Hol2g) = | (70700, )" ) 2.8

o

into the GNS-triples associated with g€.7 # and of the von
Neumann algebra

M =g = f/i.//") auf(p), 2.9)

where .# % = 7 (/)" in ¥ . The center Z%: = .4 °rna”’
is the image of the W *-isomorphism

K- LT PV TP (2.10)
canonically defined by the property

11120 = [ flodipia’e) 211
for al/l\ LT P and allvAe‘a/ , where

Alp):={(p4) (2.12)

is the weak-*-continuous affine function connected with
Aes/ (Ref. 1, Chap. 4.1.3). From Ref. 1, Chap. 2.6 it follows,
that Z# consists just of the “observables at infinity”.

Let us henceforth identify .o/ with the faithfully repre-
sented algebra 75(.2/') and drop the symbol 77, for this repre-
sentation morphism. (In some other instances we even drop
the symbols for other representations of . and hope that the
context prevents confusion.)

It is useful to introduce also for .#* a quasilocal struc-
ture by defining for every Ac.Z the von Neumann algebra

/ﬂj::f MG duf (@) C AP (2.13)
Vad
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with

MY =T (A f)C M.
From the definition it is seen that

M=o, 8 ZP =T PPt 4), (2.14)
where = denotes here W *-isomorphy, ® the W *-tensor
product,'® and the last symbol stands for the set of all -
measurable, essentially bounded functions from .7 % into

& ,. A typical element Me «#% will always be written in the
form

=" rucprds, 2.15

which is to imply that g—A4 ¢ is in .¥ =(7 %y’ , ). Since
the positive linear functional on .#%

(M )i= [ (47 1dlp)
has the trace property, .#°% is of type L. If AnA ' = ¢, then

M5 and #%. commute. The union

M= v M

Ae?

(2.16)

(2.17)

is o-weakly dense in .#”.

It should not lead to any confusion if we denote the
extension of w’e.% (.« ) to a normal state on .#%, given by the
cyclic vector £2,€7%";, by the same symbol. Since the local-
ized algebras .o/ , are finite-dimensional every restriction of
@7 (/) to an & 4, is normal and may be expressed by
means of a density matrix p% €.« ,, such that the latter de-
pend continuously on ¢ (in the weak-#-topology). Introduc-
ing

o= J:‘Hﬂ"p(pﬁ )du? (@ e tb, (2.18)
we have for Me.#%
(M) =t [phM . (2.19)

In the usual applications the subtraction terms D, are addi-
tive in A, thus we postulate

Dys =D,y +D,., if AnA’'=4. (2.20)
Then, for Ac.o7 , and 6eR, the definition
ay(A): = exp(i6D,)A exp( — i6D ) (2.21)

if Ac.o/ , , leads to a well-defined *-automorphism group on
o7y and also gives rise to a C *-dynamical system (<7 ,a,R).
The restrictions of the dual transformations a% to ¥ (<) are
denoted by v,, 8€R. Since a,(04 ) = 05, for all Ac.¥ we
have v,(&®) = @ and the defining relation

WEAR,: = a,(A),, Acod, OeR {2.22)
gives rise to a strongly continuous group of unitary operators
W4 in %, whichin turn leads to the W *-dynamical system
(-#%a” R), where

abM):=WEMW? ,, Me#?, OeR. (2.23)
We even have need for the further extended transformations
ag€Aut(# (J75)) which are also given by (2.23) with
MeRB (7).

Proposition 2.1: Denoting for fe.& = (7)) (fove)@)
1= f(vel@)), g7 (), it holds that
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#2(fove) = 1P (f)

(2.24)
OeR, fe.& (S () 1P)
and
af(k’ (f)) = K (fov,) (2.25)
entailing
V(T P)= TP (2.26)

Proof: (i) Let P denote the orthogonal projection onto

the closed subspace 2702, CJ#. Since ZeZ* implies
aB(Z e ZP, YOeR, we have for every Ce.of
(C% GEPIZ ) = (@ _ o(C )y Pa”. 1(Z)2,)
= (C0R,,Z0,).
This leads to &4 (P )22, = Z£2,, YR, and this in turn to
a5(P)= P, YOeR.
(ii} Equation (2.12) implies
apld)=Aov,, VYdAed.
According to the general theory for orthogonal measures on
7 () (Ref. 1, Chap. 4.1.3) we obtain the first and last equa-
lity in the following calculation, where 4,6/, fori = 1,...,n,
1P (4,-A") = (25,4,PA,-PA, 25)
= (2, E5(4,PPA, )2,)
= (25,25 (A \)P-Paty A, )25)
=P (4,ovgA,0v,). (*)
Here we have also used the invariance of £2, under W4 and
(i). Since the 4, deo/, separate points of .#(.«), the polyno-
mials thereof are norm-dense in %' (% (.«/)) according to the
Stone—Weierstrass theorem and, thus, o{.Z"*,.¥ |)-dense in
L2 ()P = :.L <. The mapping f—fov, defines a *-
automorphism of .¥ *(.¥ (.« ),u”) and, therefore, is o-weak-
ly continuous. g4 ( f): = u?{ fov,) is then a normal state on
£ =(S()¢”) and uniquely determined by its values on
the polynomials of the 4. Thus our last relation in (*) may be
extended to (2.24).

(iii) Let us calculate for arbitrary C,, C,€.&/ and
L= (I ()

(Cif2g ,ag(x'g(f))Cz.QB)
=pP(fCrCov_)
(ii) T~
= PP (( fovy)C1Cy)
= (Clﬂﬁ»"ﬁ(fo"o)czﬂa),
which gives (2.25).

(iv) Since for the characteristic function y ., of 7 4
CHA(A)

(i)
B a) = 1Y -a%Vs) =P (X e ) = 1

and 7% ;. =v_,(7P)is weakly-#-closed, v _ , being weak-
x-continuous, we have 77 , .77, for all 6eR, and obtain
by means of the inverse relation (2.36).

Since D, is in many cases a linear combination of local
particle number operators, let us call &, and the modifica-
tions thereof “generalized gauge transformations.”
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Definition 2.2: We say that the symmetry under gauge
transformations is spontaneously broken in o if there is at
least one pure phase state .7 ” (the support of the central
decomposition of ©”) with v, (@) # @, for some OcR.

Observation 2.3: If the symmetry under gauge transfor-
mations is spontaneously broken, then .7 ; is an overcounta-
ble set.

In fact:In this case there isan de.«, a OeR, and a .5 *
with (v4(@)4 ) # (@;4 ). But, if 8 ' varies from O to 6, the two
expectation values are continuously interpolated in virtue of
the weak-*-continuity of 8 '—v,.. Thus, {v,.(¢);
6'€[0,01} C.7” contains overcountably many different
states.

The subsequent investigations are only nontrivial if the
symmetry under gauge transformations is spontaneously
broken in &, but many of them are formally valid also in the
other case. If p—A4 ? is in .¥ *(T#,u”;.o7 ,), then also
@—A #° s so, for all OeR, if we denote

PO: = volp), geF(A). (2.27)
Thus for Me.#% the transformed element
To(M): = J‘,,gﬁ“’ (A4 %)duP (@) (2.28)

is also in .#% , for #R. In virtue of the point-wise action of
the algebraic operations in an integral von Neumann alge-
bra, T, is a *-automorphism of .#%, VAec.#, and also of
MB. 0—T,(M) is continuous in the o-weak topology by
means of the dominated convergence theorem. Finally,
6—T, is a representation of R. All these properties can be
proved also for the following set of transformations in .#%:

C:]

ayM): = f,w,;ﬂ"”(a”(A ?)du(p), OeR,

which we introduce mainly for pedagogical reasons.
Proposition 2.4: The group of gauge transformations has on
A8 the form

ab = @,0T, = Ty°Q,.

(2.29)

(2.30)

If these symmetry transformations are spontaneously
broken in @” then &, and T, for themselves are not o-weakly
continuous mappings in .#% (and thus not extendable to
W *-automorphisms of .#”) for those 8RR, for which T, # 1.

Proof: (i) The commutativity of &, and T, can be veri-
fied directly.

(ii) For arbitrary fe.¥ (7 ?u”) and de.«/ , we calcu-
late by means of (2.18), (2.19) and by means of the invariance
of »* and u” under gauge transformations

ATy

= J;Btr,, { phagld)if(@)dn’ (@)
= (PP (fla(A )
= (e’ ( (/A)

- f Lalph AL ole (@)

= J, try (p%A } fl@ )i’ (@)-
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This gives
a_olph)=p%, 1’ ae (2.31)
(iti) For C,, C,e.«/ and Me.#% we obtain

(Clﬂﬁ,aﬁ“ oM )Cy12,)

= [, watpras(ctm e, Clldte)

(ii)

= [ wtowcta_aeiciadie)

(2.24)

= (C\25,& _o°T _H(M)Cy12y),

which leads to (2.30).

(iv) Take a Me.#%, not invariant under 7, and ap-
proximate it by a net {4, ;a€l } C .« in the strong operator
topology of #°5. Then lim Tp(4,) =M #T,(M) and
lim, &,4(4,)=lim, a%(4,) = a5(M)#&,(M ), as may be
seen from (2.30).

Let us denote the o-weak generators (Ref. 1, Chap. 3) of o’
and 7'by 6, and 8+, respectively, and introduce the domain

ME = {Me#5; for all neN,d"4%°/d6"
is defined and bounded in ¢ for u”
aa. @eJ "} (2.32)
which is a o-weakly dense sub-*-algebra of .#” containing
A g
Proposition 2.5: .#°”_ is in the domains of §  and &% for
all neN. For Me_#* , Mc_#” n.#" say, it holds
6,(M)=[DyM] +64(M). (2.33)
Proof: Let g—A #° be the function associated with
T,(M), Me_#” . Then dA *°/d@ exists for u”, a.a. pe77”
and is ¢”, a.e. bounded according to the assumption. Then
for a normal state ¢ on .#*?

lim (4T, (M) — M )/6
= tim [ [(ghA 7~ 47)/0)du"(0)

~ [ (wignda=eran)dut10), )

where the last step follows from the dominated convergence
theorem, and #{¢g) are the components of the canonical de-
composition of ¥ into normal states on .# ,, p7”’ Z(Ref. 13,
Prop. 8.34).
Thus the limit in (*) exists and gives §,(M ) by defini-

tion. This may be iterated and leads to the existence of

" (M), for all neN. If Me_#” thenalso [D, M le.#” . Dif-
ferentiation of (2.30) leads to (2.33). ]

Ili. THE LIMITING HEISENBERG GENERATOR

Defining m% : = 5% /|4 |, it is well known that for every
permutation invariant state €. (/)

s-im m§ =:moeZ % = 40" (3.1)
A

exists in the GNS-Hilbert space %7, (cf,, e.g., Ref. 6).
Proposition 3.1: For every pe.** (/) it holds in 7#°,, for
Aes/ , [embedded into Z (7, )!]
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sHm[H, 4] =slmL,(d)=[H54], (32

with

G:=Y fish + X 28.ms;. (3.3)
The expectations of (3.2) in the states @ converge uniformly
in e #P ().

Proof: We have for de.# ,, ACA’,

[Hy —H5 ] = [ Seucia /14

+ 2[2:,gasﬁ,A }(st—! - mé)’

where K: = A '\ A; this tends to zero in the strong operator
topology of 5%, The expectation in @ is then estimated by

|<¢;[HA’_H£"A]>]
<Cid)/|1A’|
K
+C2(A)(l T lAl)Zl(fp,s")I

where

Cild}):

= |llzes

[

and jeZ“ is arbitrary. Since |{(g;s7)|<1, the convergence is
uniform in e (/).

In the case of ”, (3.2) gives rise to the local form of the
limiting Heisenberg generator

Lid)y=[HS,A], Acod,, (3.4)
which is a well-deﬁned antisymmetric *-derivation of .#”
with domain .7 ,. In order to obtain an explicit expression
for the closure of (3.4) we make use of the results in Ref. 14.
By means of correlation inequalities for the generators of the
KMS-dynamics, which here is generated by the reduced
Hamiltonians, one can show that for g€.7? the local density
matrices of (2.18) have the form

p% = exp(— % —BHY) (3.5)
with

H%:=H% —D,, (3.6)
where ¢ % €R is given from the normalization condition and
H ¢ from (3.3), where for p€.7” the center Z ¥ is trivial and
mg, will be identified with a c-number. Thus we may identify
H¢% with an element of .7 , for all Ae.Z’. Conforming to this
interpretation and in virtue of the dominated convergence

theorem we may write (3.1) and (3.3) for the special case

@ =dcas

mpy = Ljﬂi l, duflp), HE = f T HE ) ().
(3.7)
Application of (2.18) then gives

o =exp(— (5 —BHY), (G2’ (3.8)

Using first this explicit expression and then the invariance of
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«” under gauge transformations one obtains for Me #*
n#’,

(o [HG5.M ]) = (o[ Dy, M ])

— (P6,(M)). (3.9)

Proposition 3.2: L% is o-weakly closable with a norm-
densely defined pre-adjoint L% and it holds

LP:= LB~ =(LP)* (3.10)

The domain Z(L ?) contains .#* and there one has

LoM)=[H5M] +6+M), Med’ na?¥. (3.11)
Proof: (i) Define for Ce.o7 , and Me.#”
(02:M): = (&%C*MC ) /(P C*C), (3.12)

whenever the rhs exists. The set of finite linear combinations
of these states is norm-dense in .#% . For Ae.«/ , one obtains
for the adjoint L £* the relation
(LE*()A): = (Z;LE(A4))
{3.9)
— (of,[HY,C*]AC
+ C*4 [HA,C )/ (P, C*C).
This defines uniquely a functional in .#% . Thus, L%
: = L§*.#*% isanorm-densely and, therefore, o{.#% , . 4*)-
densely, defined linear map .#% —.#"% . Then (L% )* exists
and is o-weakly closed (cf. Ref. 1, Lemma 3.1.9), Since L £
C(L%)*, L% is o-weakly closable with closure L ”. Again
using Lemma 3.1.9 of Ref. 1 we know that the densely de-
fined closed operator L # has a densely defined pre-adjoint
and coincides with (L4 }*.
(ii) For Me #® n.#* and Ce/, we calculate
(L2 (M) = (L% ()M )
(i}
— (" [H5,C*1MC
+ C*M [H5,C1)/{PC*C)
= (FCH*[HE M | C)/(FC*C)
— (wﬁ;[Hﬁ,C*MC]V(wﬁ;C *C)

UGB [HOM ) + (B8 M.

Here we have assumed without restriction in generality that
Ces ,.

Proposition 3.3: Let Me D (L) and {4,e , ;a€l | bea
netwith |4, ||<||M ||, Vael, and 4, —M in the strong opera-
tor topology of .#”. (Such a net exists according to Ka-
plansky’s density theorem.) Then

o-w limL#4,)=L5M)

=o-wlimL, (4,). (3.13)

Proof: (i) Relation (3.10) implies that for every
MeZ(L?)thereis anet {4 e, ;yel '} with A, —M and
L#(4;}~L”?(M)in the o-weak topology of #(#°5). Thus

thenet {4, — A /;(a,y)el X1’} tends o-weakly to zero, and
for Ce/, [assume N : = (0%, C*C) > 0]

(@WLP(4, —4)
= — (@PLP(CHA, —A4;)C
+C*d, —A)L?(C))/N,
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tends to zero, which leads to the first equality in (3.13).
(if) We estimate

(L P (M) = [Hy A, ]
<Uw&LP (M) — LP(4,))
+ |<w€7’LB(Aa) - [HAarAa]>"

where the first summand goes to zero by (i). By the use of
{2.19) and (3.12) we write the second summand in the form

|t {CP5 . C* [Hﬁ" —H, ,A,]}/Nc|
<|uh ([CHA, —H,, ]05.C*

+Cph [CHHE, —H, .} /Nc|

+ i (C[PAHE, —H, JC*4,}/Nc|.
Again using the trace property of tr’j" the first term can be
written as the sum of two scalar products in 77, and is seen
to tend to zero by (3.2). Since H, — H, =H] —H',
and H% commutes with p} the second term gives

‘([H’Aa, 5 195 1M25(C*4,C— C*MC)02,)

[ o ten [, A Nale).

where C*MC = :f 2,7, (4 *)du® (). Here the first term is
dominated by

I[H%, P8, P57 26 IC*] (4. — MIC|]

in which the first norm expression is bounded according to
the Appendix and the last norm converges to zero by our
assumption. Since by Proposition 3.1 for every g7 the
integrand tends to zero uniformly in @ the entire integral
expression tends to zero, too, and this proves the second
equality in (3.13).

From the proof one has the impression that, in general,
the convergence relations in (3.13) can hardly be improved.
For special cases we show in Sec. I'V that the o-weak conver-
gence is in fact a strong operator convergence.

There are only few and not easily applicable criteria for
proving a closed derivation to generate a W *-automorphism
group. In virtue of the explicit form of L # we can proceed
here directly. The essential idea is to show that .#” isa core
for the generator.

Lemma 3.4: The molecular field values m;, for the pure
phase states ge.7 ¥ satisfy the self-consistency relations in

H

@
my, = tr, {p¥s;} (3.14)
for every {i}=icZ’ and m¢, is analytic in 6.
Proof: We have for .5

my = {gm 1)
= lim(@.s3 /|4 ]) = {gis)
for every i€Z¢ by permutation invariance and this may be
written as in (3.14) by means of the local density matrix p%,
A =i. Thus

(2.31)
mi, = tr, {pf’si} = tr,{a _ o pf)si}
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which is analytic in 8 by (2.21). L]
Theorem 3.5: L” is the generator of a o-weakly contin-

uous W *-automorphism group {7%;teR} C Aut(.#”) which

leaves .#%,n.#" invariant, for all Ac.¥ . There it holds

M)

= J- 7, (exp(itH %)exp(itD , )4
B

Xexp( — itD Jexp( — itH %))du" (@ )
where, as before, H{: =H% — D, and pt: = v,{p ).
Proof: (i) For Me_#% let us define the transformations
(M) by the rhs of (3.15), which is a well-defined prescrip-
tion since D, and H % are additive in A and thus (3.15) does
not depend on which .#%4n.#% isto contain M. From (2.31)
and (3.5) we derive
a_(H%)=HY%, u’ ae.
This gives
explit (HY, — D, ))explit ‘D, Jexplit (H % — D, )explitD,,
=expli(t' + ¢ \H% — D,)explilt’ +1)D,)

(3.15)

(3.16)

which leads to the group property
7{3’ oTtﬁ = 7{;+ t's Vt’t IER;

if the iterated transformation is defined.

(ii) From (3.15) we also infer that 72 leaves .#% invar-
iant. If we replace in (3.15) in the argument of 7, the symbol
@ by @6 and assume Me.#%n.#* , and if we use (3.3) and
(3.6) to conclude that H %% is analytic in 6 with bounded
derivatives, we arrive at the invariance of .#* under 72, for
all z€R. By inspection we further observe that 7 is a *-iso-
morphism of .#% _ for all z€R. In order to check the o-weak
continuity in ¢, we investigate {1;7°(M )) for a normal state 1/
on .#* and for Me.#% . #” . This expectation is an u”-
integral over expectations which are continuous in ¢ and uni-
formly bounded in pe.7%.

(iii) If we calculate {(&®, 7% (M )), Me# 54", by
means of the local density operator o4, from (3.8) we observe
the dropping out of the H %"-terms, which commute with the
p%, and are left with (0%a?(M)) = ("M ).

(iv) The combination of (i), (i), and (iii) shows that the 7/
are extendable to elements of a o-weakly continuous W *-
automorphism group of .#*, designated by the same sym-
bols.

(v) From the foregoing considerations it follows that
" isleft invariant by the 7%, is o-weakly dense in .#”, and
is in the domain of the generator of the dynamical group.
Thus, .#* is a core for the o-weak generator of this W *-
system (Ref. 1, Corollary 3.1.7). Since .#* contains &, it is
also a core for L # [cf. (3.10)], and since the generator of the
W *-system coincides there with L # it follows that L “ is, in
fact, the generator of {7%;teR}.

In the preceding discussion of the finite-time dynamical
transformations 7 we have used the disintegrated form of
elements Me._#” into the pure phase components to study
the peculiarities of these transformations. In this way it is
made evident, that the physical dynamics transforms the
pure phase into each other and that its explicit formulation

(3.17)
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requires the subtraction terms D ,, which locally do not
show up before performing the thermodynamic limit, and
neither show up in the infinitesimal generator L ”. They drop
out only if the symmetry under gauge transformations is not
spontaneously broken.

On the other hand, it is quite natural to introduce the
KMS-automorphisms generated by the reduced Hamilton-
ian locally in the form

77 (M ). = explitH %\M exp( — itH %), Me.#",. (3.18)
With this (3.15) gives

72 = Proa? (3.19)
and the group property of {7%;tcR} implies
Broaf. = af o, Y11'eR. (3.20)

IV. LOCAL APPROXIMATION OF THE LIMITING
DYNAMICS

The crucial step for deriving the convergence of the lo-
cal finite-time-transformations to the limiting dynamics
from that of the Heisenberg generators is the following re-
sult.

Theorem 4.1: For all Ae.«”, and all neN we have in the
GNS-Hilbert space #,

s-limL"(4)=L""(4) (4.1)

[where L, is defined in (3.2) and L # in (3.10)].
Proof: (i) Since {s% a = 1,2k ?} is a basis in .2, there
are A, €C, independent of i, such that

[S;I,Sf)] - = Z/tabcsf'
We calculate, with m% =s5/|4 |,

LA (sf)) = z/labc [./;Sf + gu (mfi S? + sfm; )] (42]

which gives by linear superposition

L, (m%) =Y Awe [fars + gu(miméy 4+ mm?)].
' (4.3)

The strong convergence of the norm-bounded m%, for A—
entails that of (4.2) and {4.3). To perform a complete induc-
tion for the simultaneous iteration of (4.2} and (4.3) let us
assume that the existence of s-lim,, L 7(s?) and s-

lim,, L "7(m?% ) together with the norm-boundedness of these
nets has been proved for 1<m<n — 1. Using (4.3) we obtain

Ly im5)
= Shun LS L")

+ 8, L5 (miymy + mim3)].
The last term is by means of the Leibniz formula a sum
of L4 (m% )L "~ '~ *m¢, )-expressions, where 1<k<n — 1,
which are norm-bounded, strongly convergent nets of opera-
tors in view of the induction hypothesis. Thus the total
expression is convergent and norm-bounded and the analo-
gous reasoning applies to L 7, (s?).
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(i) In virtue of Lemma 3.4 .#” is invariant under L #",
for all neN. Relation (3.2) and Proposition 3.3 imply

o-w lim L2 (s?) = L#%s®)
A

and (i) shows that this limit is approached also in the strong
operator topology. Thus the reasoning can be repeated for
L’ (s%), and so on. In this way we have proved (4.1) for
A =s?, band i arbitrary.

{iil) An arbitrary A€/, is a finite sum of products

® q 8¢ for some A€.¥. Applying the Leibniz rule once

again, we observe that L’} .(® .5, ) is a finite sum of finite
products IT,_, L} . (s;), n,€NU{ 0}, the factors of which are
norm-bounded and converge because of (ii). Thus {4.1) is
proved for general A€o/ ,.

As far as we know the subsequent reasoning for proving
the convergence of the local dynamical power series has been
published for the considered class of models only for the case
of pure phase representations and only for the KMS-dynam-
ics (cf. Ref. 6 and references therein). (In Ref. 15 the analo-
gous problem is discussed for a rather general class of repre-
sentations but for z—z-spin interactions only.) Since a
detailed elaboration of all necessary steps of our general case
is given in Ref. 7, we outline here only the proof of the follow-
ing result.

Theorem 4.2: Let 72, t€R, be the o-weakly continuous
W *-automorphism group of .#” introduced in Theorem 3.5
and denote by 7/ the inner W *-automorphism groups gener-
ated by L, Ae.¥. Then it holds for all reR

s-lim 704 ) = P4), Aes,, (4.4)

where the convergence is uniform in all finite z-intervals.
Proof- (i) By complete induction with respect to » and
|A | one finds for every de.«Z ,, neN, and Ac.Y

L7 (A ) <cld )M Ty, YA€, (4.5)

where the positive constants c(4 )and M|, . depend only on 4
and [A |, respectively.
(ii) In virtue of (i) and Theorem 4.1 one obtains

. oo tn o tﬂ
| LA} —= S LP4)—,
SIAmZ ,4()’1! g,o ()n!

n=20
for [t <1/M,,. (4.6)

Since L # generates 72, the rhs of Eq. (4.6) coincides with
7% for the specified, A-dependent #-interval.

(i11) The extension of (4.6) to all of the z-axis is effectuat-
ed by theorems for analytic functions with uniform boun-
dedness properties.

Summing up we have shown that the local interactions
between the atomic constituents of a macroscopic system,
which is weakly coupled to reservoirs, lead in a unique way
to a limiting dynamics with a nontrivial classical part, if the
invariance under gauge transformations is spontaneously
broken in the thermodynamical equilibrium state. This sym-
metry breaking is here a property of the local interactions
and not brought about—as is usual in elementary particle
theories—by an additional external potential of lower sym-
metry. For superconductors, superfluids and lasers, all of
which are mainly treated by means of molecular field mod-
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els, the gauge group is, in fact, spontaneously broken below
the transition temperature. (The equilibrium phase transi-
tion for a laser system seems not to be observable since the
required photon density cannot be provided.) Formula (3.15)
for the effective, temperature-dependent limiting dynamics
exhibits then, beside the usual molecular field part, a rota-
tion of the macroscopic phase angle with a constant velocity
proportional to the chemical potential. In spite of the exten-
sive literature on, e.g., superconductivity (cf. Ref. 16 and
references therein) the latter feature seems not to have been
derived before from a microscopic model theory, such as the
BCS theory. Indeed, the two prerequisites for such a deriva-
tion, the multiphase representation and the systematic con-
struction of the closure of the dynamical generator, are lack-
ing in the usual treatment of many body physics. Thus, the
time dependence of the phase is usually introduced only in
an heuristic manner. If now two of those systems are weakly
coupled, one obtains, for example, a time-dependent phase
difference, if the systems have different chemical potentials,
and this gives rise to so-called macroscopic quantum phe-
nomena.'®'® A model discussion in the spirit of the present
investigation* incorporates these phenomena into a general
quantum dynamics which is uniquely determined by the mi-
croscopic interactions. If we apply the concepts of hierarchi-
cal systems (cf. Ref. 9, Chap. 6.2) to our models and call the
local aspects the “lower level” and the classical aspects the
“higher level” of our description, we establish on the one
hand a remarkable coincidence of our results with the gen-
eral scheme, especially we find the two time scales character-
ized by HZ and D, respectively, but we would like to em-
phasize on the other hand, that the lower level ““explains” the
higher level, if the contacts of the system to the surrounding
(represented by the reservoirs) is specified.
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APPENDIX: ESTIMATE FOR PROPOSITION 3.3
We derive here the relation
N [H 305105 ' 211<C, VA, (*)

where the positive constant Cis independent of A, and com-
plete by this the proof of Proposition 3.3.
(i) From (3.8) we have

ph = exp(— ¢4 —BHY)

N L:”w(exp( — % —BH)dW ()
which, in fa.ct, is an invertible element of .#% . Since
Al

= [ i en1en e,

itis sufficient to prove (*) for every pure phase representation
with a g-independent C. In the following all quantities refer
to a fixed pure phase representation in spite of the index ¢
having been dropped. Furthermore, we set
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Hy=H,, H{=K,, 7, (d)=

(ii) For every i€Z? we choose a complete set of matrix
units of .«7;: {P m,,e,,e = 1,...,k %} with

Plexelplr,lnl: i EIT]I’ zPElEl:

which diagonahze p:and K;
zﬂ' . PIEI €is K ZEGI fl €l

For every Aeﬁ we denote the vector (€7; icA ) by €, the set of
all such €’s is denoted by 1, . For ¢, €'el, we set

=[Jtw El=3EL

and obtain by the fact that ¢ is a product state

Pa = E/l?P?,e

ecl 4

Pl:i= 8P,

€Lei

with positive square root

1/2 Z(/{A)lﬂp

el ,

In¥ ,: = o 42 CF|=7,) we have the orthonormal ba-
sis

{'Q?s = P?,e wA_ lﬂ; 6:6’6-[,1 }
with the property

2,022 )=tr,{p,PLow; '] =0, for e#€};
([HA ’pA ]P; l"()’ﬂe,e‘)
= ({2,(H, _PAHAP;l)P?,e'wA_ I-Q)
=(,H, PA vlﬂ)_trA{wApAHAP?,e'}//{?

=d. (QH, Pl w; '),
with

d..:=(1—A4./4,).

(iii) Denoting

S =1,%X1,
we have
I[Hapaloa ' 207

Y de.
(€,€)e7 4
Since K , is diagonal and d,, = 0 we may replace H , by (m®
.~_m(l ')

H, — K, = >g,54(m} —2m°).

a

! '(O!HAPE,E' U)X 1"0 )|2

Defining
I (€.,61): = {(6,€)EF 4656 fixed]
it is sufficient to sum over Uy, U_ #L/ 4 (€4 -€%), which en-

larges the norm expression. For fixed (€,€')e.7 4 (€,,€L), €k

F €L,
(2.Se52m
= (@.5g.2(ms — m70 )
s s
~(azm (e L -m)or)
(za;g 1A Nar " '
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with A = A \k.
We decompose the sum over .# , (€,€;), €, F# €y, into
four parts. Stipulating (€,€'}e.# , (€, ,€;.) the first is

Z (ﬂizzgasizﬂ ?e)/
(€.€} a
C
|(ﬂ22gasazﬂeksk)/ |A |2,

where the completeness relation in &#°, . , has been em-
ployed. The second is

> (23214 po2)
(€,€") a
sh. .
X( €€ ’Zngsk( |A' —m )'Q)
52 Y
= zb(ﬂ zga IA l sk,e’k)

b
X {2 ,;k,c'k’Zgbsi‘Q )(-Qs( ls//;| - mb)ﬂ )

Observing

e
Zy 4|
the modulus of the considered term is dominated by C,/

|A |2. The third term is similar to the second one and the
fourth is

(.(),22gas2( IS//;I - m“)!) ;‘6)

= Z(ﬂ,ZgaSiﬂ eeer 2 b 52855742 )
a,b

<(o{ G- i)

2

(€,€)

=)
~—
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where the last expectation value leads to the upper bound
C,/|A |. The positive constants C,--C, are A- and k-indepen-
dent as well as ¢-independent. The k-summation in the aug-
mented norm expression is thus compensated by a factor 1/
|A | and the norm itself is dominated by a A- and ¢-indepen-
dent constant.
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The solution of the Dirac-Coulomb equation obtained by Wong and Yeh s interpreted in terms of
the SU(2) X SO(2,1) group. All electromagnetic transition probabilities can be considered as
matrix elements of the tensor operators of this group, and evaluated exactly. The cases considered
include transitions from bound-to-bound, bound-to-continuum, and continuum-to-continuum

states.

PACS numbers: 02.20. + b, 11.10.Qr, 12.20. — m

I. INTRODUCTION

We wish to present in this paper a group theoretic treat-
ment of the Dirac-Coulomb equation in terms of
SU(2} X SO(2,1). Though various authors'? have used other
groups such as SO(4,1) and SO(4,2) to deal with the relativis-
tic Kepler problem, we find that it is simpler and more direct
to use just the product group SU(2)x SO(2,1). Besides, in
using the groups SO(4,1) and SO(4,2), there is an implicit
involvement of SU(2) and SO(2,1) as subgroups.

We shall show that the solution of the Dirac-Coulomb
equation obtained by us® can be interpreted under the pro-
duct group SU(2) X SO(2,1). The group SU(2) is responsible
for the angular momentum and spin part of the wave func-
tion and SO(2,1) is responsible for the radial wave function.
The idea that SO(2,1) is involved with the radial wave func-
tion of the Schrodinger equation is well known in the litera-
ture; see, e.g., Bacry,* Miller,” and Armstrong.® However, in
trying to connect the Schrodinger wave function directly
with the basis function of SO(2,1), Miller and Armstrong had
to introduce two parameters z and ¢, where ¢ is not directly
related to the radial parameter r. [See, however, Chacoén,
Levi, and Moshinsky, J. Math. Phys. 17, 1919 (1976}, for the
interpretation of ¢ as time in the Schrédinger picture.] We
shall restrict our parameter to the one single variable 7, or
equivalently p. In doing so we have to consider a slightly
modified wave function G, which is related to the Schro-
dinger wave function R by the simple relationship

G=p¥*R. (1.1)

What we say about SO(2,1) actually applies to G. How-
ever, since G is related to R by the simple relation Eq. (1.1),
once we know the group theoretic significance of G we can
obtain all results connected with R. The solution to the
Dirac-Coulomb equation obtained by us® is very similar to
the corresponding Schrodinger equation. Thus we can trans-
fer the group theoretic interpretation from the Schrédinger
case to the Dirac case.

The electromagnetic transition probabilities of the rela-
tivistic electron in a Coulomb field can thus be considered as

® Current address: Naval Weapons Center, Code 3313, China Lake, CA
93555.
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matrix elements of the tensor operators under this group. It
is our intention to show that these matrix elements can all be
evaluated exactly. We have thus a twofold result. First, from
the group theoretic point of view, it shows that, according to
the Wigner-Eckart theorem, both the reduced matrix ele-
ments and the Wigner coefficients of SO(2,1) can be explicit-
ly identified, and second, from the physical point of view, the
electromagnetic properties of the relativistic electron in a
Coulomb field are also exactly known.

It should be mentioned that the exact solution of the
relativistic Coulomb problem using SU(2) X SO(2,1) was also
given in a paper by Barut and Bornzin.” (We wish to thank
the referee for bringing this paper to our attention.) How-
ever, it seems that the solution we obtained in Ref. 3 is more
explicit. Group theoretical calculation of transitions from
bound-to-bound, bound-to-continuum, and continuum-to-
continuum states have also been discussed by Barut and Wil-
son® (bound-bound, nonrelativistic), Barut, Rasmussen, and
Salamé, I° (continuum-continuum, elastic scattering), 11'’
(bound—continuum). Again we wish to thank the referee for
bringing these papers to our attention.

In Sec. I1, we start with the Schrédinger equation and
show how it can be interpreted under the group
SU(2)x SO(2,1). This interpretation is then carried over to
the Dirac-Coulomb equation, according to the solution ob-
tained by us.? In Sec. III, we show that the electromagnetic
matrix elements of the relativistic electron in bound-bound
transitions can be exactly evaluated. This corresponds physi-
cally to the transition probabilities of the discrete spectrum
of hydrogenlike atoms. In Sec. IV, we obtain the exact re-
sults for bound—continuum transitions. This corresponds
physically to internal conversion and the photoeffect. In Sec.
V, we obtain the exact results for continuum-continuum
transitions. This corresponds physically to bremsstrahlung
and its inverse process, pair creation in the presence of a
Coulomb field.

Il. SU(2) x SO(2,1) FOR THE DIRAC-COULOMB
EQUATION

The Dirac—Coulomb equation can be treated in a simi-
lar way as the Schridinger equation as far as its group prop-
erties are concerned. We shall therefore start with the Schro-
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dinger equation. The complete wave function of the
Schrodinger equation is

Y(r0.9)=R(Y,,(0.4) (2.1)
where Y,,, (6,4 ) is the usual spherical harmonics and
R(r)=Ne V% p' F\((—n+1+ 1,21+ 2,p), (2.2)
! 172 22 3/2
N=T i T inltll) 2n ] (T) ’ 2.3)
p=2Zr/n. (2.4)
The radial wave function of R ( p) satisfies the equation

_Li<pz‘_1£)+ [1_i_1_(’i21_)]g=o. (2.5)

pPdp\" dp p 4 P

Now we define the “modified radial wave function” G ( p) as
G(p)=p**R(p). (2.6)

Then we find that G ( p) satisfies the equation

2 G 4/(I+ 1)+ 3/4
—p d_GZ' _1 46 + L g + __(__+_)_—t.___
dp 2dp 4 4p
Now we assert that G is the basis function for the “posi-
tive discrete series representation” of SO(2,1), with genera-

tors

G =nG.(2.7)

d* 1 d  p  lil+]) 3
J= — S S SN R N
TPy T 2dp T a T 16p
(2.8)
J=J,—1p, (2.9)
d i
L= —ip 4 1L 2.10
2 pdp 4 ( )

One easily checks that J,, J,, and J; are the generators
of SO(2,1) since

[T Jol = —il5, [Jod3] =iy, and [J3,J,] = il,.
(2.11)
Also the Casimir operator I, 1s
L=—-J-Ji+Ji=1{I+1) (2.12)
The matrix elements of the generators are
J5G,, = nG,, (2.13)
J. G, =W, +iJ)G,, =[(n=1)n+1+1]"?G, .,
(2.14)
J_ Gy =W, —ih)G, = [n+1)n—1-11"°G,_,,
(2.15)

Thus the “modified Schrodinger wave function” G, (p)
Y, (6,9 )is a basis of the representation SO(2,1) X SO(3) with
generators J,, J,, J; for SO(2,1) and L,, L,, L; for SO(3),
where L = rXp is the angular momentum operator.

For the Dirac-Coulomb equation, the generators of
SU(2) are now the total angular momentum J, where
J =L+ S. Here S is the spin angular momentum S = lo,
where 0y, 0,, o5 are the Pauli matrices. The spinor wave
function y% are

l 4 j — T T
x’é=§[ﬂ_T i #] Y404 (2.16)
where
k=a(j+ 1) (2.17)
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I=j+ 1, (2.18)

and
(L + l)y% = — Kk x%- (2.19)

Thus we see that three quantum numbers are required
to completely specify the state: j, @, u, or equivalently j, /, 1,
because j, /, and @ are related to each other according to Eq.
(2.18). The complete solution to the Dirac—-Coulomb equa-

tion is?
_ N(i(E (/¥) — M)1/2¢A(— Y;X#_K)’ (2.20)
B(E (k/7) + m)' 8 v Xk
where
Ay =yl + 3o —1) (2.21)
y=al(j+1? - (Ze)?]', (2.22)
bror = [T(24 + 2+ n)(n + 2)]"2
(24 +2)
Xp'e! =P\ F\(—n,,21 + 2,p), (2.23)
n=Ze’E/u,—A—-1l=n—-41-1, (2.24)
p =2u,r=2m*— E¥"?, (2.25)
N =212 pd?[(n — plin — y — 1)1 12
X [(n —y)n—y+ VYE (k/y) — &m)
+ (E (k/y) + @m)] "2, (2.26)

Again we define the “modified radial wave function” G tobe

Ginlp) =p"*81nlp) (2.27)

Then G, ,,( p) is a basis function of SO(2,1) with generators
K,, K,, K, where

: 3
K3=—pd2———i+£+/l(/{+ R
dp> 2dp 4 0 16
(2.28)
K,=K,—1p, (2.29)
d i
K= —ip-2 L 2.30
2 ip ip 4 (2.30)

Note that the solution in {2.20) is obtained after a trans-
formation S, where

S =exp[ — 1 p,0-# tanh~'(Ze*/K )], (2.31)
K=B(oL+1). (2.32)

However, this transformation commutes with the genera-
tors K,, K,, K, and therefore we have SK,§ ~'=K,,
i=12.3.

Comparing the Dirac case with the Schrodinger case,
we see that the only difference is the change from / in the
Schrodinger case to A, and the introduction of the additional
quantum number @, which takes on the values of + 1 or
— 1. Thus the bound states are completely specified under
the group SU(2) X SO(2,1).

The continuum is also very easy to deal with. All one
hastodoisto reinterpret p. By defining k = (E2 — m*)"/?, we
find that the radial wave function for the continuum is a
function of p = 2ikr, with everything else unchanged. The
normalization of the continuum wave function will be dis-
cussed in Sec. IV.

Thus we have shown that the wave function of the
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Dirac-Coulomb equation is related to the basis function of
the irreducible representations of SU(2) x SO(2,1).

Ill. ELECTROMAGNETIC MATRIX ELEMENTS AS
TENSOR OPERATORS IN BOUND-BOUND
TRANSITIONS

In a previous paper'’ we have obtained the dipole tran-
sition probabilities for hydrogenic atoms using the exact so-
lution of the Dirac—Coulomb equation. This result is equiva-
lent to the neglect of retardation effects. In this paper we
shall give the complete result for this problem, including
retardation and for all multipoles, both electric and magnet-
ic.

The exact formula in bound—bound transitions has been
given by Babushkin,'? Scofield,"® Rosner and Bhalla,'* and
Moses. !> Moreover, the results of Babushkin and Scofield
are basically contained in Rose,'® who considered internal
conversion. The result of Rosner and Bhalla differs from
Scofield’s in appearance. However, it has been pointed out
by Grant'’ that the two results are the same under gauge
invariance. Moses'’ has also given an alternate expression, at
least for the electric part. The simplest form is given by
Grant.

According to Grant, the spontaneous emission prob-
ability per unit time for the transition f—a is

Ag o 27| M ;5 |?
po =T S 5 3 M
.+ fils L Jj.V =
@y ’ |Mops |2,
< 2L+ 1) 0 -
(3.1)
where
Maﬁ = M:znﬁ +A_lgﬁ’ (3.2)
= AL 41
Lyt
xfo €ufy +f8a)julkr)F dr, (3.3)

M:, =i* [(Z%)m[('(a — Kg)

XJ: 8t + 8o 1 1 (PP dr

L+ I)Jw(gafﬁ —fa8s)JL 1 tkr) d’]
(L + 1)1/2[(K — Kg)

xf: (8o +fap) e 1 (kr)P? dr

—L Lw (8ufs —fo85) L _ 1 (kP)P dr”, (3.4)

where the solution to the Dirac—Coulomb equation is writ-
ten as

o (8Xx
s (if)("_x)’
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(3.5)
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Y% being the usual spinors. The fand g are normalized such
that

fw @ +fyrtdr=1.

This result can be easily carried over into our notation.
Thus we obtain for the transition probability per unit time,
for magnetic multipole radiation:

(3.6)

(L + 1)2/ + 1)
r, - LL+N)F+ 1)
o e () 2aw§L‘, LL+1)
"2 +2 -] j, L :
X+« 1/ (_% , 0), 3.7)

where

I —fmkr &8t + B8uf, |7 dr, (3.8

Y= (1{)( _,f). (3.9)

ag y"

The selection rule for magnetic multipole radiation is such
that the term is zero unless j — 1@ + ;' + &' + L is even.
For the electric multipole radiation, the matrix element is
zero unless the term above is odd. For the electric multipole
radiation, we find

T, .le)=2aw EL: (2L1+ - { (Li l)vz

X[e—cMF o +(L+0, ]

L 1 172 , . _ 2

() e o]
i 7 Ly

X (2 +1)(—; \ 0), (3.10)

where
I, = iji (kP) [ = D5 + gy |7 dr. (3.11)

Thus the complete result can be obtained if one can
evaluate the integrals in (3.8) and (3.11). For bound-bound
transitions, these integrals are further equivalent to the fol-
lowing integral ¢

s=

X RAL 7 oL 72 ) dr,

e g (2 )
(3.12)

where L ¢ is a generalized Laguerre polynomial. This inte-
gral can be evaluated exactly by using the generating func-
tion of the generalized Laguerre polynomial, a technique we
have used successfully in a previous paper.'® Here we shall
only give the final result.

A convergent sum for the integral # can be obtained in
all cases if we expand in powers of k /u| . We can distinguish
between two cases: (a) k /u} < 1, and (b} k /1] > 1. For case
(a) we obtain the result
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‘—L—1 y+84n, , 4 L —3-258—y] L+25,A+y
I e T ™ Theh 1}
a,B,v.6

FA+A'+L+3) THA+A'+L+3)+)MMA+A'+L+4)+9)
SIFA +A4"+L+3) TlA+A +L+4)(L+3+9)

/l+A’+L+2+25+y)(/l+_/1'+L+2+26+7+a)@)
(T .

(/1—/1’+L+26+ 1 +y)(7/+u+1+n,—ﬂ)
>< b

n, — ﬁ

where, without loss of generality, we have taken p, <. The series in (3.13) is convergent. For the parameters a and S, they
take values from O to #, and from O to n, respectively and are therefore finite. The summation over ¥ is convergent because
4, <) . The summation over § is convergent because k /i < 1. For different multipoles, the transition probability goes down
roughly as (k /2u )*~. This is the justification of the “dipole approximation” when the energy of the photon is low, since in that
case we have k /u| < 1. Also we can see that this is equivalent to the neglect of retardation, since in that case we also have

(3.13)

n —a

k/u; <1.
For case (b}, k /u; > 1, we obtain

/:77.1/22,{+A'~L—11u/11‘u;i’k—(/1+}.’+3)F(/{+/1;+L+3)

sin[(7/2L —A—A)ICHA +A' +L+3)+TBA+A' —L+2)+8)

(— 1°Q8)piui 7 (n, +A+y—a

k¥ally —a)Bl26 —y — B) n —a

TMA+A +L+4)C YA+ +L+3)C (1 +5)5

)(n;+/1'+25—7/—ﬂ)
n;—B

n cos[(7/2A +A' —L)ITA+A' + L+ 4+ &) A + 1" + L +3) + 5)

aB'y's

TUA+A +L+3) A +A + L+ 4G +8)8Ny —a)B"

—25 -1 25—y +1 /1 'y ’ /1! 25! 1_ ' ’
k i (nr+ +y a)(n,+ +28 41—y ﬁ)} 514

28 +1—y — B n—a

where we have used the relation
'z (1 —z) = 7 csclmz). (3.15)

This series is also convergent. The summation over
al(a’) and B ( B') goes from zero to n, and zero to n., respec-
tively, and is therefore finite. The summation over ¥{y') is
convergent because u,/{ < 1. The summation over 4 (6 ') is
convergent because u]/k < 1. For different multipoles, the
transition probability goes down as 2 ~ %, Thus when the
photon energy is large, higher order multipoles, at least for
the first few, might be important.

Finally we wish to mention a new selection rule for
magnetic radiation. This rule is that if & and &' are of oppo-
site sign, then the magnetic radiation is negligible. Using this
rule, we easily conclude that s, ,,<»d;,, transitions are for-
bidden magnetically. This result was deduced by Rose!®
after considering nuclear forces in a lengthy way. However,
our results are straightforward and can be applied to other
angular momentum states.

IV. BOUND-CONTINUUM TRANSITIONS

In the case of bound—continuum transitions, there are
two distinct processes: (1) internal conversion and (2) pho-
toeffect and its inverse process, radiative capture.

For internal conversion, the relevant tensor operator in
the radial integral is a spherical Hankel function of the first
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n,—pB’'

r
kind. The internal conversion coefficient, as one can expect,
increases as L increases, and therefore from the mathemat-
ical point of view, the series does not converge as L increases
to infinity. However, in actual practice, one need not calcu-
late beyond, say, L = 10, since then the photon number be-
comes extremely small. For the photoeffect, the relevant ten-
sor operator is the spherical Bessel function, just as the
bound-bound case, and the series converges as L increases.

There is also a difference in the continuum electron
wave function between internal conversion and photoeffect.
For internal conversion, the continuum wave function can
be taken directly from the solution of the Dirac~Coulomb
equation with a suitable normalization, for example, in the
energy scale. For the photoeffect, the outgoing electron wave
function must be written in the form of a plane wave plus its
scattered part. Therefore it must be written as a superposi-
tion of solutions to the Dirac~Coulomb equation. In this
section we give a detailed construction of such a wave func-
tion. But first let us discuss the internal conversion coeffi-
cient.

The main work on internal conversion coefficients was
done by Rose'®'*2° and his co-workers. In this paper we
shall restrict ourselves to the “static” part of the nucleus.
Moreover, we shall treat the nucleus as a point charge. Our
main interest is in the correct expression for the normalized
wave function of the electron, and in the analytic evaluation
of the radial integral.

M. K. F. Wong and H. Yeh 2605



For the photon vector potential we use the multipole
expansion as given by Rose.'® Then we obtain basically two
internal conversion coefficients 8, and o, , corresponding to
the magnetic and electric multipoles, respectively. In a deri-
vation completely similar to Rose except with regard to fac-
tors in the averaging process,

B, =ﬁ‘f—”<zz'+ Dy
X2+ 12— & + )Cj = 18, + 1@,L,0,0)
XW2j,j =38,/ + 3@ Lk + &I, (4.1)
15 = [ heg + g £, 4.2
R\ = (m/2kr)' *H Y, | (kF), (4.3)
J—@+) + 1o+ L =even. (4.4)

We also note that

CHj—18,J +4@ LOOYW (j,j — 48, ] — 4o LL)

2%

-( 2L + 1 >(J N
Y—-—a+ )y +a+1)/\ -1 0o "
Tak
= (Y +a +1 U+a+ 12+ 1
a L(L+1)(J + &' + );(1+w+ 02+ 1)

XCj + 18, ] + 1@',L.0,0)
XWj,j+13@,7,J + @ L)

X

W — x)f W (@ + Bt )P dr
0
+ L fw h (Ij)— 1 (a)gJK - a'gx'fx)rz dr
(4]

0 2
+L f V@S + Deuf ) dr| (4.6)
0

As one can see, our results in Eqgs. (4.1) and (4.6 differ from
those of Rose by a factor of (2j' 4+ 1)/(2L + 1). This comes
from the difference in calculating the averaging process. The
process is, according to Rose, to average over the initial
states and sum over final states. We perform this operation
by dividing the sum over the final states by (2j' + 1), the
number of initial states. However, Rose performs this oper-
ation by dividing the sum by (2L + 1). Hence the difference
of the factor (2j' + 1)/(2L + 1). We think our factor is cor-
rect because this result must agree with the corresponding
result in bound-bound transitions. But our result agrees
with Grant'” as given in Sec. ITI. Let us also add that all the
other authors such as Scofield, > Rosner and Bhalla,'* do not
have the factor (2L + 1) in their formula for bound-bound
transitions.

For the electron wave function in the bound state, we
have the same g and fas in Sec. III. For the electron wave
function in the continuum, we normalize the wave function
in the energy scale such that?®'
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o w*rtAw
f rzdrRW(r)f Ry (NdW' = 1. (4.7)
(0] W-AWR
Then it is seen that
8(@) = (E /p)!*2 (@IN (Ex/y)~ '/ (4.8)
where N, = normalization factor in the p scale,

Q@) = prpe-m2 LA 1+ o
e rpi+s

X FA + 1 —in,24 + 2,2ipr). (4.9)

Let us note that
e P F A+ 1 —in24 +22ipr)

=" F\(A + 1+ ip24 + 2, — 2ipr) (4.10)

because of Kummer’s relation for the confluent hypergeo-
metric function. Thus (2 (@) is pure real.

The f(@) is defined in exactly the same way and is also
pure real. The radial wave functions for the continuum
therefore satisfy the same reality conditions as those ob-
tained by Rose.”” However, they are simpler than Rose’s in
that each fand g contains only one term of a confluent hyper-
geometric function.

We also find that our normalization differs from Rose??
in that we have an extra factor containing E '/%. This comes
from the relativistic equation

E’=m?+p’ (4.11)
so that
EdE =pdp. {4.12)
In changing from the p scale to the E scale, one has®!
—1/2 —1/2
Ry = (iE—) R, = (ﬁ) R,. (4.13)

dp E

Therefore, the E '/? term must enter into the normalization.
Now Bethe and Salpeter were considering the nonrelativistic
case where E = k 2/2,and dE /dk = k. Thereforein the non-
relativistic case there is no E }/? term in the normalization.
Rose left out the E '/? term because he used the nonrelativis-
tic relation, but not the relativistic one. The term E /2, how-
ever, is canceled by the term E ~'/? at the end of Eq. {4.8),
which comes from the normalization of the first-order Dirac
equation.

Thus in the case of internal conversion, all we have to do
is to evaluate the integral K.

K :J‘ oI A2 AL Y ot )
(4]

X FA + 1+ ig,24 + 2, — 2ipridr. (4.14)

We have obtained a closed-form expression for K. The
method makes use of the generating function for the general-
ized Laguerre polynomial, and the integral representation
for the confluent hypergeometric function. The final result is
given as follows.

Again we distinguish between two cases: (a) u; /(k + p)
<1, and (b) 4} /(k + p)> 1. Then in case (a) we have
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K=3 (— i Ll (ii)vk—“vr(z +A+A" =)

oyl (L —vjI\2
_(——(2-{-/{—{-/1’—1/)
B

a n —a

For case (b), (k + p)/ui <1, we have

K = z (_l')L+1 (L+V)'

& WL — I\ 2

X () A i kg1

’ '

a

(—/l'+/1—v+ﬁ'
X n

r

B —24' -2 , . 2p
x 2F1(2+/1+A HB—vA 1 in2 42, ),

(ii)vk TR A +/1'—1/)(

, 2
)2F1(2+/1+/1’—V+/J",/1+1+l77,2ﬂ»+2,p—p—)-

)( _lu’l)ﬂ[l(P+k)] _(2+/1+/1.'-V+B)( _ l)n;_a

7 (4.15)
—(2+/l+/1’—1’))
BI
—2+4 +/1’-v+ﬁ’))
o
(4.16)

+k

Next we use Kummer’s relation® to transform the argument of the hypergeometric function in (4.15) and (4.16) from z to 1/z.

Then we have

F24A+A +B—vA+1+in20+22/(p+k) =

r(u_‘}_z)l-\(v_ﬁqi,_1+l.77)(—P+k)2+/1+/1'+B~v
FrA—2"+v-BIrA+1+in)

2p

XoF24A+A —v+BA —A—v+B+ 124+ +B—v—in(p+k)/2p)

FA+29Qr(B+4iA—v+1—ip) (_p+k
FA+1=—q2+A+A"+8—v) 2p

Note that if one has a term ( — 1)* where A is irrational,
we write it as ¢™. The two hypergeometric functions in Eq.
(4.17) are now convergent because ( p + k )/2p < 1. Thus we
have obtained an exact evaluation of the matrix elements in
internal conversion.

For the photoeffect, we have®

do = (2m)" M |*8(E)d *p, (4.18)
M= —e2m)'/?k "2 J.dSr Procee™ Py, (4.19)
E=(pPP+m)"? —k — Eg. (4.20)

The bound state wave function ¥} is defined in exactly
the same way as before. The continuum wave function is
obtained by a superposition of solutions from the Dirac—
Coulomb equation such that it takes the form of a plane wave
plus the scattered part asymptotically. We construct such a
wave function in the same fashion as indicated by one of us in
a previous paper.>’ The four components of ¥, have the fol-
lowing form, where the small components occupy the first
two rows and the large components occupy the third and
fourth rows. Thus for u = 4, we have in the first row,

_ar1 (Ew/Y)—m\? 1/2
21: I (WE(x/y)+m) Pcos O)[I(I+ 1)]

><(ei§1+1lapl+l +ei§IRp,~l); (421)
in the second row,
_ 172 )
{
X(—e“"'R, 4R, _,); (4.22)
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)/l+l+i'q

XoF(—A+ipAd+1+inyv—F—A1"+in(p+k)/2p).

(4.17)

T
in the third row,
S iPcos O)[(I+ IR,  _, +1"R,]; (4.23)
7

and in the fourth row,

R
Hp,

. : i,
S i'Plcos G)e® [* 'R, ] —e (4.24)
]
where
_ 2o T4+ 1+ i)
24 +2)r (1 + in)
Xe =P Fy(A + 1 — in,24 + 2,2ipr), (4.25)
pi=(1*—a?Z?)"?, (4.26)
, it lpr+ 1414
expl2ig,) = ¢~ - Llp LI (4.27)
I'ip, +1—in)
. i PR & + i
exp2ig, . ) = e~ rer 1= AP 1) f"). (4.28)
F(P1+1 — in)

This construction is in complete accordance with the
nonrelativistic case where the Schrodinger equation is used.
Let us note that in the nonrelativistic limit, the third row
reproduces the plane wave plus the scattered part obtained
from the Schrédinger equation in parabolic coordinates,
The fourth row vanishes, and the small components in the
first two rows are negligible because of the factors under the
square root.

It has been shown in Ref. 25 that this construction gives
the correct result for the Coulomb scattering of fast electrons
in agreement with McKinley and Feshbach.?” In each of
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Eqs. (4.21) to (4.24) the first term refers to @ = — 1 and the
second term refers to @ = 1. In terms of spinors y% and the
quantum numbers j and @, we can rewrite the third and
fourth rows as

172
Var 3 - ‘/25(j+%5)
Lo

12 (4.29)

Pi+ 1724 (/DB — liXK '
The first and second rows for the small component can then
be written accordingly. In a similar manner we can construct

X e’fj+ anp

a plane wave with u = — i, This is for the large component,
) 1_\2
47 i’_l/z( '+—(T)>
Vém 125‘, J+
X eigj ” WZ]Z)RP,‘ +1/2 4 (1725 — \)X"— 1/2' (430)

and for the small component,
— E(K/?/) - m )1/2.' 1/2( . 1 ._,)1/2
47y o (———— gt + —a
Va _,zzu Eix/y)+m J 2
— 172

15 >
Xe VR, e v X K (4.31)

Combining Egs. (4.21)-{4.24), (4.30), and {4.31), we can
write the electron wave function in the z direction as for the
small component:

E(K/V)—m)l/zw'w/z(' 1 ~)1/2
4 L) = m " o5 2
ﬁj@%(}s(x/ywm A U

v a0 172 '
Xe " ((U)’u N Rp1+ 172 — W/ 2o + 1)X"§:) (4.32)
and for the large component,
i 0 LN g amapm + 12
\/E";ztl 1/ (_]-}.?a) 91“'/2"“(@)!‘*‘
J@up
XRP,‘+1/2+11/2N¢7,,1,X'¢:; (433)

where u = + 1. Our wave function is normalized to unit
amplitude.

So far the wave function is propagating in the z direc-
tion. In the case of the photoeffect the electron goes in the
direction p’, different in general from the direction of the
photon k. Though it is possible to rotate the electron wave
function, it is much easier to rotate the photon wave func-

_J

tion. This is what we shall do in this paper.
The photon vector potential A is thus expanded in mul-
tipoles

S

A=7 i DEL('.0',0)

=imMZL L
X [ALy(m) +iP A yle)], (4.34)

where P takes the values of + 1 or — 1, and A, ,,(m) and
A, \(e) are given as follows:

Apulm)= — (2/m)"% (kr)Y}, (6,8 2L + 1)'/?, (4.35)
Apple)= (2/77')1/2 [(L + 1)1/2jL— 1(k’)Y1_ML _,6.¢)
=LY% (kN Y M, (0.0)] (4.36)

The Y7, .(6,¢ ) are the vector spherical harmonics discussed
by Blatt and Weisskopf.”® They are further expressed by
Brink and Satchler® as follows:

[L(L+ 1)]"2Y¥, =LY,,, (4.37)
[LQL 4+ D]V, M, =V(rY,,,), (4.38)
(L + DRL + )] 2r 272 M

=V(r 5 'Y, ) {4.39)

In Eq. (4.34), 6" is the angle between p’ and k, where p’ is
now the z axis, and ¢ ' is the azimuthal angle of k. The angu-
lar integration can then be evaluated easily.

The plane wave construction of the electron beam has
been done by other authors, for example, Akheizer and Bere-
tetskii’® and Johnson and Deck.?' However, their expression
seems to be more complicated. These authors rotate their
electron wave function to its direction p’ and hence obtain a
more complicated expression. We are able to avoid this pro-
cess by using p' as the z axis but rotating the photon vector
potential.

We now proceed to the exact evaluation of the matrix
elements in the photoeffect. Without loss of generality, we
take @’ to be the continuum and a to be the bound state. The
photon vector potential A has been expanded in terms of
electric and magnetic multipoles. The selection rules that
j+1@ +j + @' + L = odd for the magnetic part and even
for the electric part still apply. After performing the angular
integration, we obtain the matrix elements as follows:

2+ H2+1) 2L+ 1)

aAp,mia']) =k + ) — I e 32

{a

1 1
2 2

X((jl _ %)I/Zeigj‘ul/ZR

Pr— 172

I 27*+ 1/2f:( . (]: _ %)llzeié}f VlRpfA

-p -3 M

—K 3
S YR,

-1/2

+(] j, L)[_a-)g:t'j'+l/2

2L(L + 1) ™

XJdrr"jdkr)(_{ 7 LO)[(

i L ) [E[) g V2 (E’(K'/VI) — m)vz
M E/(Kl/yl] + m

l/Z)
+ (]l + %}I/Zeié’]«+1/21,apf1 1/2\1)}

(E I(Kl/yl) . m)l/z
EI(K,/‘}/’) + m

o iy o 1/2 &5
X( - (] - %)1/2el i l/ZRP,"‘VZ*I + (-] + %) e +l/zRP/'+1/2)

. :;1" + l/Zf':((jl _ %)1/281'& - l/lRp]" )
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withj +J + }(@ + &) + L = odd;

)L+;t—+—3/2—j+f (2]+1)(2]'+l)
27

(2,4 el (e 1 ) st meon=(5)"

"« _ 1/2
Xjp 41 (kr(L + 1 +K——K)]a)g*z’ + 172 (_i'iﬂ_"_“)

(a|dple)la’) =(—1

E’(K’/}/I)+m
X{“j’ - l/zeigj'Al/zRPffl/Z‘l + j' + I/Zeigj"”sz,-'H/z}
L 1 1/2 ) L 1/2. '
{( Z ) 1 (kr)(—L “K+K)*(m) Je (kML + 1)+« -—K)]

le:ii'/”z{— ](-__, ___%eigj’Al/szj'_l/z + J(q+—%ei§j'+l/2RPf+1/2_1}]

U £y DT

X&g:?'*‘/z(ﬁj—:—);—m—)m{ j = 1/726% "R, +\/m/—2e";"*"2RPI_,WZ}
) i — k)= () T 1 = iz

x{\i™=1/2¢%-"R, + \/j—’ﬂ/—ze’gf'MRpl_,wz_l}”, (4.41)

withj +/ + \@ + &) + L = even.

These formulas are very similar to those in Sec. III for bound-bound transitions, but now they represent the exact matrix
elements in the photoeffect. In Eqs. (4.40) and (4.41), given & and M, only one term in

S, ) —
(1 J L)and( J J )
- 3 M -4 -3 M

will survive. Thus these equations are not as complicated as they look.
It remains for us to obtain the radial integrals in (4.40) and (4.41). This can be summarized in the integral #:

5 =f L2+ iy (A FA” + 1+ ig,24" + 2, — 2ipr)
{¢]

Xe—‘u,r+l'p’rrﬂ.+/1'+2dr. (4'42)

The final results are as follows. We distinguish between two cases. (a) u,<k<p' +k, or k<u,<p’ + k, and (b)
k<p' +k<p,.
For case (a), we obtain

7= zMﬂ( ﬁ— l)ﬂg(,-c)_a_llﬂ(_ 1)a+g(—2/1;2_ﬂ)

2L+ 3)
x( o )Fz(a+b’+1L+3/2,/1 b l4ip2L 4320 2, —2K ) (4.43)
", —a ko —k
a=L+A+1"+2, (4.44)
c=p —k (4.45)

For case (b), we have

F = z Jrl(a + 1)kt (—l—d)(_1)_u_1_,9'(ic)ﬁ'(—2ﬁ.—1+a_B')

22+ L+ 3/2) \ B a’

, (—a—B' —1 B ,
x(-1)a+“+’+ﬂ( a=F" )Fz(—ﬂ’,L+3/2,/l’+1+z‘7],2L+3,2/1’+2, 2k _2p ) (4.46)
n —a p—k p—k
Next we write*?
Elalt 7y ) = (1 =) F by By L) (4.47)
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Then we expand the F, as follows:

d B)m ,
FyafB vy xy) = z (()7’)( ! Lila +mBy yxm. (4.48)
m=0 m
Finally we use Kummer’s relation for case (a)
'ior —a) ') 'a—b)
Filabcz) = —= /(2" F 1— 1 —-b,1/z2) 4 —2 1 b — —
oF(abez) (—)F(b)( 2 Fiaa+1—ca+ z) + (—b)I‘()( 2% F b+ 1 —c,bb+1—a,l/z).
4.49
For case (b) we use 44
I'ie)r'ce—a—>5)
F b = F ,b; b — Lyl =
2F(abcz) I‘(c—a)I"(c—b)z Waba+b+1—c¢l -2
I'ea+b—c¢), Ca—b
1—2zf " %Flc—ac—b —a—b1 -2
Far®) {1—2z) Fic—ayc c+1—a—b1-2 (4.50)
Then we obtain for case (a)
Vrk I (a + 1) (‘—a_l) +8+1
— £ la+B
4 a%,:m 2L (L 4+ 3/2) B wr (=1
X(_-—l )L+A+A'+E+3(—2’1_2“ﬁ)( B )( 2k )’"
p+k a n,—a/\p' +k
(@ +B+ 1)L +3/2), [ FRA'+2QrA'—a—B—m—in)
(2L + 3),,m! roA'+1—a—B—mriA’'+1—in
’ k a+B+m+1 ’
X(p_—;p,> 2Fl(a+ﬁ+m+19a+B+m—u’ya+B+1+m—‘l’+l77yp+,k)
+I‘(M’+2)I‘(a+,3+m—xi'+i1;) (p’-+—k)"'+“"”
rA'+1+imlia+1—-B+m) -2
XZF,(— —in,/l’+1—i77,/1'+l—a—ﬁ—m—in,p2+,k>}. (4.51)
P
For case (b) we obtain
Jal(a+1 ,,L(—a—1> L—A—A'=3-8" ’ '
= K TeTATA T — 1 ! k
f a'BZm 2L+IF(L+3/2) BI H#y ( l)ﬁ(p + )ﬂ
><(—1)ar+a'+a+1(—2/1—1+a+B’)(—a—l3—1)(—B’)m(L+3/2),,.( 2k )m
a' n,—a (2L + 3),,m! r+k
FRA' + 2N A"+ 148" —m +in) ( . , . . , —(p'—k))
F| — 1—in, — —A -y —
Xr(u"*'z)r(—ﬁ'—1—/l’+m—i77)(—(p’—k))"+1+ﬂ'—M+in
HN—=pg"+mlA' +1—in p+k
szz(u'+2+/3’*m/1'+1+in,/l’+2+ﬁ’—m+m,;(,‘”—+_#)]. (4.52)
P

Equation (4.51) is convergent for the following reasons.
The summation over L is convergent because k /(p" + k) < 1.
The summation over fisconvergentbecausep,/(p’' + k) < 1
by virtue of the case (a) condition. The summation over m is
convergent because 2k /(p' + k)< 1, and the summation
over A’ is convergent because p'/(p' + k)< 1.

Equation (4.52) is convergent for the following reasons.
The summation over L is convergent because k /i, < 1 by
virtue of the case (b) condition. The summation over ' and
m goes as follows:

(s (e
My Hy Ptk
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All three factors are less than unity. The first one because
p' — k<p' + k <p,. Thus the summation over m and B is
convergent. The summation over 4 ' is convergent because
P <p +k<pu,.

Finally we wish to remark that the three conditions
with two from case (a) and one from case (b) exhaust all possi-
ble relations between i, k, and p’ + k. Thus the matrix ele-
ments for the photoeffect have been obtained in closed ana-
lytic form.

V. CONTINUUM-CONTINUUM TRANSITIONS

We now discuss the third case, continuum—continuum
transitions. Physically, this corresponds to bremsstrahlung
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and pair creation in the presence of a Coulomb field.

It is interesting to note that this case has been essentially
solved by Rozics and Johnson.** However, we have made
some improvements on their solutions. First, with regard to
the angular part, we have obtained a much simpler expres-
sion than theirs. Second, the electron wave function in the
continuum used by us is also simpler than theirs. Third, we
have put the final expresssion in such a way that it converges
in all cases.

The differential cross section for this process is given by

do = (2") i pEkdkadn, zfdnz M (5.1)
where
M= J-d 3r Yt (a)oree™ Yla'). (5.2)

The photon vector potential is expanded in exactly the
same way as in Eq. (4.34). The electron wave functions which
must behave as a plane wave plus a scattered part have also
been constructed in Sec. IV. We now wish to introduce one

more symbol ™. This is the phase shift for the complex con-
jugate of €/, i.e.,
€ = (e)*. (5.3)

It can be easily seen that ¢ can be obtained from ¢’ b
y

Ek/¥)+ m

S, T

~u+3/2,5i v 12
@™ R\ —2@+ ) C(

and for the large component,

Z D’+ (125 2(h,0,,0) 1/22771/2(j+ _1{_:))1/2(:}#+ U
g 2
j+ie

iS4 1728
xXe R"“”*“”"‘“‘”C(y—r

%
p—7 T p

changing i to — i. For example, if

eizgl ‘ﬂpl—lir(pl+l+”7) (5.4)
Lip +1—in)
then

o2 m'(p,~1)r(p1 +1—in) (5.5)
Tlp +1+in)

Now we have to rotate the wave functions to their prop-
er directions.

We choose p, to be the z axis, then the photon would
have angles 6, , é,, and p, would have angles 6,, ¢,.

The rotated photon vector potential is written in exact-
ly the same way as in Eq. (4.34).

LQ!‘!P(‘#k!eA’ HALy(m) + iP Apyle]]-

(5.6)

The rotation to be performed on the electron wave func-
tion is limited to the space coordinates only, the spin coordi-
nates being unchanged. All primed quantities refer to the
electron 1, and all unprimed quantities refer to the electron
2. It can be seen that the rotated wave function is the follow-
ing: For the small component,

) _ 172 172
S i 0,00 (WA g4 L5)

) Y}‘j(r/z)ak’f/2§ (5.7)

} J -7 7
,i Y e X (5.8)

Our rotated wave function (5.7) and (5.8) is essentially the same as that of Johnson and Deck,>' if one remembers that*

D,ml@By) = (4n/(2] + 1)'2Y (By).

We can now evaluate the angular integration in M. We find

{a

Ay (m)a’) =7+7a V2 VG4 1/28)Y ) + 1/2@) 32/ m) 3

X(2L + 1)L ~VHL 4 1)172 ij,_(kr)rz drik + «')

XQRL+ 1) — @+ 1) + & + 1)/ (4) 12

<1y geaic(

%
X [R B+ ae— R - a@ (

E(K/y) 172
XRy, v ime -1 (_ﬁn— ,

E(k/y)
withj + /' 4 }(& + &') + L = odd;
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o j+io L
0 0

(5.9)
)S_ eig/' * ‘1/2'5'ei51 + /2@
E;(Kl/yl) —m 1/2 —, .
W TR i@+
(5.10)
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{a

(!'ALM(GHG') — i/’+]~&v)y+ l/25';4'+ 1/2(j+ 1/2(0"')1/2(]-/ + 1/25-)/)1/2

XS [ P+ + 10 4@ 4 02 Y 06

j+o j+i L
><C< 2
0 0 0

)Sveigi + (1/2|E:'ei5_,'+ (1/2)a [&v): (L(K'/‘Z');)n-)l/Z

EI(KI/YI) +m

XR;;H/zHVZ)(ZJ— I)Rp,+,,24(1/2)(a'+ 1) [(L + l)l/zL _l/sz—l(kr)( —L—« +K)

~L'"L+ 1)V, kL + 14« -k} +a (

—1/2;

XRp,-“,zHl/zua'— y [(L+ 'L JL—1
><(L+1—K+K')]]
withj +j + @ + &') + L = even; and
T T T
| U S Il s
T w—7 p-p) \p—r
LU L
Sv=(_1y4—r(f+2a) ]:+‘2a) L ,)C(]+2w
T—p W1 p-p) \p—r1

1
2
T
1

2

T

Elk/y)—m
Ex/v)+m

172
* -
P+ 12— (1720@ + 1)

(kr) — L + &' — k) — LYXL + 1)"3%, , | (kr)

(5.11)
Neff 18 4 7
#)C(#,_T : w) (5.12)
. ~I+l&~)1 1 o
;)C(’#,jT : ;) (5.13)

Let us now perform the integration over 8,, ¢,. This is obtained by taking | M |* and then integrating over df2,. However,

because of the orthonormality property of Y, we have

27 T
J; J; Y*T(92,¢2)Y7f'(92,¢2)sin 0,d0,d¢,=06,.6,,,
(5.14)

Hence the term Y4 [, (6,,,) becomes either 0 or 1
after the integration. The summation over 7in S; and .S, can
then be performed, leading to a product of a 3 —j symbol
and a 6 — j symbol as before.

It remains for us to evaluate the radial integral, which is
of the form I:

I= ijL+ (kr)R ¥(2ipr)R ;. (2ip'r)r* dr, (5.15)
0

where R has been defined in (4.25).

The basic structure of the radial integral is the product
of three nonterminating hypergeometric functions. This in-
tegral can be immediately obtained in terms of a generalized
hypergeometric function of three variables. In fact, math-
ematically this result extends to n variables, i.e., the integral
of n nonterminating confluent hypergeometric functions is
equal to a generalized hypergeometric function of n varia-
bles. This formula can be found in Erdelyi et al.*>:

J 1T M plat M, e —rigy
(4]
=ata,(p,+4)"" "M w+M)

XFA((V"‘MWl — Kyl — Ky

.o n
2,2, > +A...m) (5.16)
A=la, + - +a,), (5.17)
M=y 4+ +u, (5.18)
Re(v+M)>0, Re(p, +ia, + - tla,)>0, (5.19)
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M, (2) =2z e V2 Fi(y +p — k,2u + 1,2). (5.20)
Since
*(2ipr) = L1~ ) R, (2ipr), (5.21)

I'(1+4in)

we can write the arguments of the three confluent hypergeo-
metric functions in (5.15) as 2ikr, 2ipr, and 2ip’r. In terms of
formula (5.16), we have

K, =in, K,=in, k;3=0, (5.22)
wy=A4+1 p=A"+1, pu;=L+3 (5.23)
o, =2p, a,=2p, a;=2k, (5.24)
p=0, v= —1 (5.25)
A=ilp+p +k), (5.26)
M=A4+A"+L+] (5.27)

1 :2&+A'+L+7/2p/1pka[i(p+p:+k)]—/14,1>1,73
XTA+A'"+L+3)F,A+21"+L+3;
XA+ 14+mA' +1+iy,L+3/2
X24 +2,24"+22L +32p(p +p' + k),

X2p'/(p+p +k)2k/(p+p + k) (5.28)

Without loss of generality, we can assume p >p’, p > k.
Then we can distinguish between two cases. (a)p <p’ + &. (b)
p>p' + k.Incase (a) the series F, in (5.28)is already conver-
gent since all three arguments are less than unity. Moreover,
the summation over 4,4 ’, and L is also convergent, since the
fractions 2p/(p+p' + k), 20'/(p+p + k), and 2k/
{p + P’ + k), being identical to the three arguments in F,
are also less than unity.

In case (b) we write F, as follows:
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(@,my + my + ms)( Brm ) Basmo) Basms)

F (@B Bfsy V2V 3% 1 %2%3) = Z

m,,my,m;

= Z JFila + my 4+ my,BL,y X))

m;,mz

where

(a.m) =T e+ m)/T(a). {5.30)

Then we use Kummer’s relation to transform ,F, in
(5.29) from argument x, to 1/x, according to (4.49). With
this transformation, the integral I is expressed as a conver-
gent series for the following reasons. The function F, is now
convergent since all its arguments are less than unity. The
factor (2p/(p + p’ + k))*, which was the only divergent term
originally, is now canceled by the terms (—z)~“ and
(—z)~ % in Eq. (4.49), since

) —A—A'—L—3
(—ae= (-2 )
pt+p +k

—A—1—i#

(—z)"bz(————z‘p—~) n.

p+p +k
Thus we have obtained a convergent series for the radial
integral in all cases.

Let us now briefly compare our results with those of
Rozics and Johnson. For the angular part, Rocizs and John-
son obtained a very complicated result because they rotated
all three vectors k, p,, and p, to their respective directions.
Weare able to avoid this complication by choosing p, as the z
axis, and rotating k and p, with respect to p,. We then obtain
a single term Y 7 (0,,6,)in the matrix element M with
regard to the variables 6, and ¢,. This term can be easily
integrated over d{2,, because of the orthonormality property
of Y. Thus our final result is expressed in terms of 6, and 4,
which are both contained in the rotation matrix &%,
(@« ,0,,0)in Eq. (5.6). This result is much simpler than that of
Rocizs and Johnson.

For the radial integral, our result is basically the same
as Rozics and Johnson, but with two additional remarks.
The first remark is that mathematically this integral can be
extended to the product of » confluent hypergeometric func-
tions. This result will be useful when one considers higher-
order perturbation using the exact Coulomb wave function.
The second remark is that in the present case we have ob-
tained a convergent series valid for all conditions.

(5.31)

and

(5.32)
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x'lnnxg”zxg’h

(¥ 1Y 215 (V3sm3)m I lm)

(ct;my + ms)( Brmo)( Bams)

(5.29)

X7,

(¥2smally3ms)

Thus the relativistic Kepler problem has been solved in
a form which is mathematically exact.
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The paper deals with the direct linearization, an approach used to generate particular solutions of
the partial differential equations that can be solved through the inverse scattering transform.
Linear integral equations are presented which enable one to find broad classes of solutions to
certain nonlinear evolution equations in 1 + 1 and 2 + 1 dimensions.

PACS numbers: 02.30.Jr
. INTRODUCTION

The partial differential equations (PDE’s) associated
with the inverse scattering transform (IST) (see, for instance,
Ref. 1 for details) are structurally rich. It is clear from the
work done in this field that these equations admit many
kinds of approaches and studies. Broadly speaking (see, for
example, Ref. 2), it is possible to group these approaches in
two different classes: “algebraic properties” and “‘methods
of solution.”

Among the algebraic properties one can associate with
each of these PDE’s are the existence of an infinite hierarchy
of equations characterized by the same linear problem; the
existence of infinitely many conserved quantities and of a
Hamiltonian (sometimes bi-Hamiltonian) structure; the pos-
sibility of associating with these equations a so-called Back-
lund transformation (BT)—i.e., a nonlinear transformation
connecting different solutions, etc.

The methods of solution developed so far depend of
course on the specific problem that one has to solve: the IST
for instance is the appropriate tool to solve the initial value
problem associated with these PDE’s.

In order to generate particular solutions there exist oth-
er methods: e.g., the BT; the Hirota approach'; the Dressing
method?; and the Riemann-Hilbert direct approach,” intro-
duced by Zakharov and Shabat (ZS); etc. The Dressing meth-
od has been formulated via an integral equation of the
Gel’'fand-Levitan—-Marchenko (GLM) type, and the Rie-
mann-Hilbert (RH) direct approach is based on a local ho-
mogeneous RH problem, used to generate solutions of the
PDE. Later we will discuss in some detail the RH method,
used often as a reference point of our analysis.

In this paper we will concentrate on a particular meth-
od of solution: the direct linearization (DL}, an approach
used to generate particular solutions of the PDE’s that can
be solved through the IST. We will (a) discuss earlier work
and will give a natural generalization, which captures a sig-
nificantly larger class of solutions; (b) stress the connections
between this method and some of the main features of the
IST; and (c) compare this linearization with the RH direct
approach introduced by ZS, showing their connections and
differences.

. THE DIRECT LINEARIZATION

The DL was introduced by Fokas and Ablowitz® in con-
nection with the Korteweg—de Vries (KdV) equation

* Permanent address: Dipartimento di Fisica, Universita di Roma, 00183
Roma, Italy.
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u, +u,, +o6uu, =0, u=uxt). (1)

It is based essentially on the existence of an integral equation
¢(x’[;k)+if¢(x:t;1)ei1x+i1‘t di 7)=1, 2)
L [+ K

involving an arbitrary contour L and measure dA (/) which
linearizes Eq. (1). In fact, under the assumption that the ho-
mogeneous version of (2) has only the trivial solution, the
solution ¢ of (2} provides a solution u(x,# ) of the KdV equa-
tion through the formula

ulet)= — 9, J¢(x,t;l e+l gA (1), (3)

The original motivation for this result is associated with
the, by now classical, IST {corresponding to #—0 sufficient-
ly rapidly as |x|— oo ) of the KdV equation. Specifically the
integral equation (2), with contour and measure fixed and
given in terms of the scattering data, is the integrai formula-
tion of the matrix RH problem,?

(im0 (G =) “

In (4) ¢ is the same as in (2), ¢ is another eigenfunction with
appropriate analytic properties, and the matrix G is given in
terms of the scattering data.

Another motivation is based on the Rosales perturba-
tion approach®; in fact the solution (3) can be interpreted as
the sum of the perturbation series solution of the KdV equa-
tion around the solution u = 0.

The arbitrariness of contour and measure in (2) allows
one to capture a wider class of solutions than the one given
by the GLM equation; as an example in Ref. 5 it was shown
for instance that using (2) it is possible to find a three param-

eter family of solutions of the self-similar reduction of (1):
U+ 6uu’ — 2u +xu') =0, wu=ux). (5)

The GLM equation is able to provide just one parameter
family of solutions of {5).

Another suggestive argument is associated with the lin-
ear limit of (3); in this case, Eq. (3) becomes

ux,t)= — 4, J‘e‘“"" RO Ga k). (6)

Equation (6) is the general solution (“Ehrenpreis principle”)
of the linearized KdV equation
u, +u.,, =0. (7)

The linear limit of (3) provides the most general solution of

© 1984 American Institute of Physics 2614



Eq. (7), whereas it is known that the linear limit of the GLM
provides just those solutions of (7) obtainable using the Four-
ier transform.

These considerations are very far from implying that
this DL provides the most general solution of (1); on the
contrary recent studies on the equation of Painlevé IT (PII),

V' —x0— 22 =a, (8)
which is intimately connected to Eq. (5) (see Ref. 7), have
shown® that it is not the case, since the solutions of (5) ob-
tained through (2) correspond just to the limited interval
(0,1) of the parameter « in (8).

In other words, the perturbation solution (3) (in the Ro-
sales language) of the KdV equation around u# = O corre-
sponds only to the solution of PII in the interval 0 <a < 1. It
is natural to consider an extension of the DL formulated
above which would correspond to the perturbation solution
of the KdV equation around any arbitrary solution u, of the
KdV itself.

Ili. A GENERALIZATION OF THE DL

The essence of this more general linearization is given
by the following proposition.
Proposition I: Let ¢(x,t;k ) be a solution of

Yxbk) + f deslh xskDdA () = 4 x k), (9)

where L and dA (/) are arbitrary contour and measure;
YW x,:k ) and ¢P(x, £k ) are two arbitrary solutions of the
coupled systems

Yo, + (U + k2/4), =0, (10a)
Yy, = Uy Yo + (k?— 2uphy (10b)

uy = uy{x,t ) is any given solution of the KdV equation (1);
and A (x,t;k,!) is defined in terms of ¥{"* by

btk D)= [2/(0 = K2)] [ el 1) x, 05k )
— U6l 1Y x5k )] - (11)
Assuming that the homogeneous version of (9} has only the
zero solution, then

ulot) = gt ) + 3, f Utk WA (k) (12)

solves the KdV equation.
The proof is direct and it is obtained operating on Eq. (9)
with the operators P and M defined by

P=d, +u+k?/4, M= —0,+u, +(k*—2u)d,. (13)

The result of this operation gives

(Pi//)(x,t;k ) + f{P;b)(x,t;l Vi (x,1:k,1 )d/l (l)=0, (14a)
L
(M)(x.tk) + f (M.t o (x5, A (1)
L
- f (Pl 1k 2 s VA (1), (14b)

and now if we assume that the homogeneous version of Eq.
(9) has only the zero solution, Eq. (14a) implies that Py =0
and then Eq. (14b) implies that My = 0. The compatibility
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between these two equations finally implies that » solves the
KdYV equation (1).
The linearization given here obviously contains the spe-

cial cases in which u, = 0 and u, = — 2/x?, which are ex-
plicit solutions of Eq. (1); in these cases the DL was previous-
ly given >

In the Appendix we give a constructive procedure that,
starting with the general assumption (9), enables one to char-
acterize the kernel /4 in terms of ¢, as in {11) and, at the same
time, to fix the integral representation of u — u in terms of ¥
and ¥, as in (12). Such a systematic procedure, whose main
steps are essentially the same for all the PDE’s solvable via
the IST, will be the basis of the results of this paper.

We remark that we could have given the DL of the KdV
equation for the function @ {x,t;k ) =v(x,t;k )/ ¥V (x, 6k ), in-
stead of ¢(x,t;k ). In this case the corresponding integral
equation

b (xtk) + f 8 et )gbetsk YA (1) = 1,
gletskd )=t Ve (s d 1/t (15b)

has 1 as forcing term and apparently would be the more
appropriate formulation for investigating analyticity prop-
ertiesin k, in view of the solution of the IST. As far as the DL
is concerned, the two formulations are completely equiva-
lent and here and in the following we will use either one or
the other, according to the convenience and to the elegance
of the associated formulas.

The explicit formula (11) for the kernel A of Eq. (9)
shows the singular character of the integral equation and
strongly suggests that, as in the case , = 0, some type of RH
problem is going to be the natural structure underlying the
IST of the KdV equation for solutions u, as a finite perturba-
tion of a given solution

As we wrote above, the essence of this method is related
to the existence of a linear integral equation like (9) [or {15a}]
which provides solutions of the KdV equation. On the other
hand, we know that the KdV equation is one of the many
PDE’s that can be solved through the IST. Hence it is natu-
ral to ask ourselves if and how the DL, in the generalized
form introduced here, applies to other equations.

For this purpose, let us consider the n X n matrix equa-
tion

(15a)

W, =2J¥ 4+ QW, ¥=W¥ixnk), (16)

where the scalar constant z plays the role of spectral param-
eter, Jis a constant diagonal matrix, and Q = Q (x,t ) is an off-
diagonal matrix. Equation (16) is the natural n X n general-
ization of the generalized ZS problem (see Refs. 10 and 11)
and its IST has been recently rigorously studied by Beals and
Coifman.'?

In order to give the DL associated with (16} it is conven-
ient to introudce the matrix function @ (x,z;k ) defined by

D (x,tk )= (x,1k )&~ o 1k ), (17)

where ¥ and ¥}’ solve Eq. (16) corresponding to the two
potentials @ and Q,.

The linearization of the class of evolution equations as-
sociated with the spectral problem (16) is then given by the
following.
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Proposition 2: Let @ (x,t;z) be a solution of
D (x,1;2) + f¢ (x,50)G x,t;2,1)dA (1) =1, (18)
L

when L and dA (/) are arbitrary contour and measure,  is the
identity matrix, G is defined by

G (xtzl )=z — 1)~ "W x5l
X Goll 5~ '(x,851), (19)

where G(/ ) is an arbitrary constant matrix function, and the
¥ 2 are two arbitrary solutions of Eq. (16) for Qy(x,t ). As-
suming that the homogeneous version of (18) has only the
trivial solution, then ¥ (x,?) defined by

¥ (x,t;2) = D (x,5;2)¥ V(x,1;2) (20)
solves Eq. (16) if

Q(xt) = Qofx,t) + [J,chb sl 0 i)

X G )P @~ '(x,551)dA (I)]. {21)

In this proposition and in the following ones we often intro-
duce arbitrary functions assuming that they satisfy suitable
regularity properties in order to give sense to the integral
formulas in which they appear.

Again the proof'is direct and is obtained by applying the
operator {2,

(2F )x,tz)= — F, +z[J,F ] + QF — FQ,, (22)
on Eq. (18) to get

(20 )(x,1:2) + f(nqb Jx51)G (x 52,0 )dA (1) =0, (23)

the result follows from the uniqueness assumption. In the
Appendix we give a sketch of how to constructively obtain
the linearization contained in Proposition 2, since the proce-
dure does not differ in spirit from the one used for obtaining
Proposition 1.

Problem (16) allows us to easily discuss the connections
between the DL and the RH direct approach, indeed it will
turn out that, if used on Eq. (16), then the two approaches are
equivalent.

The RH direct approach introduced by ZS is based on
the solution of the following matrix homogeneous RH prob-
lem:

D *(x,t;z) = @ ~(x,5:2)[I + R (x,1;2)], (24)
where z lies on an arbitrary contour L in the complex-z
plane, @ *{z)and @ ~(z)aretheboundary values on L of func-
tions analytic inside and outside, respectively, of L, @ ~(z}—1
as |z|— 0, and R is defined by

R (x,t,2) = Wolx, 1:2)Gof2) ¥ 5 '(3,1:2), (25)

where G,(z) is an arbitrary constant matrix and ¥, solves Eq.
(16) with the potential Q,. Then it is easy to verify [using (24),
(25), and (16)] that ¥= (x,t,z) and Q (x,? ), defined by

¥ *(x,tz) =D *(x,t2)¥(x,t,2), (26)

W+ Q)= [PF +P =@+ Qlxt)](@ *)7,
(27)

solve Eq. (16).
The equivalence between the DL given in Proposition 2
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and the RH direct method is immediate and obtains by com-
paring (18) and (19) with the ( — ) projection of (24):

l—z
where z—L from outside the contour.

The equivalence of the two approaches shows that the
homogeneous RH problem (24) on which the ZS method is
based, is the natural analytic structure underlying the linear-
ization of the PDE’s associated with the spectral problem
(16). The particular z-dependence of the kernel G of Eq. (18),
given in {19), indicates that the integral equation (18) comes
from the ( — ) projection of a homogeneous RH problem of
the type (24). Vice versa, if the z-dependence of G appeared in
a different way, we would infer that (24) is not an adequate
analytic structure for describing the problem. We will show
in the following that this phenomenon is not exceptional,
being a common feature of the PDE’s related to the IST in
2 + 1 dimensions.

While the RH approach (due to its restrictive basis) can-
not in general be applied, the DL, based on a linear integral
equation of the type (18), where the z-dependence of the ker-
nel G'is determined a posteriori, case by case [through direct
algebraic calculations and is in general different from the one
given in (19)], turns out to be a viable approach for character-
izing a wide class of solutions of the PDE under investiga-
tion.

@ “(x,t52) — ZL f T AL B B Y
)L

IV.THE DL IN 2 + 1 DIMENSIONS

The DL in 2 + 1 dimensions is again based on a linear
integral equation

B x5k )+ fab (e B(1v)
X G (xp, 5k, Lv)dE (Iv) = 1. (29)

Now the integration is in two variables / and v, a reflection of
the higher dimensionality of the configurational space, L
and d{ (/,v) are arbitrary contour and measure, S = 3 (/,v) is
an arbitrary function of / and v, and the kernel G will be
characterized in terms of certain linear PDE’s whose coeffi-
cients are given in terms of the unperturbed solution
Uglx .yt ).

As an example, let us apply the DL to the Kadomtsev-
Petviashvili (KP) equation'?

(v, + Oun, + uyyy ) = — 302uyy, oeC (30)
that can be obtained as a compatibility condition of the sys-
tem

PY=ap, + . +up =0,

M=y, + 4. + 6uth, + 3<ux —0 f ) uy(x’)dx’)dr =0.
(31b)

In our analysis o can be thought of as an arbitrary complex
parameter, including then the two cases ¢ = iand — 1 (KPI
and KPII) in which Eq. (30) describes the propagation of
quasi-one-dimensional waves in a nonlinear weakly disper-
sive medium and the sign of o” coincides with the sign of the
dispersion.

(31a)
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We have the following proposition.
Proposition 3: Let y(x,,t;k ) be a solution of

Yrptsk) + f f ey 1)
X b et E (L) = ol ik ), (32)

where i, solves the coupled system (31) corresponding to a
given solution uy(x,y.t ) of Eq. (30) and 4 is given by the for-
mula

h (‘x?y7t;k’lav)

-1 f £ ol otk

+ oW,k v,a), (33)
where w is a solution of the coupled system
ow, =4[/ (alola) — /ity (@], (34a)
0, = = 2[fulaWola) - frlals @) + flals (@)]

— 3ufla)iola), (34b)
with
fla)=flaysly),  doa) = dolay,tk),
and fsolves
of, —fex —uf =0, (35)

£+ 4f o + 6uof, + 3(u0x ¥ af uoydx')/z 0. (36)

Assuming that the homogeneous version of (32) has only the
trivial solution, then u(x,y,t ), defined through

ubt) = uglxt) + 0, f fw(x,y,r-ﬁ(l,v»
Xf(x,y,t;l,v)d§ (lrv)! (37)

is a solution of the KP equation.

Again the proof is direct and it is based on the applica-
tion of the operators P and M on Eq. (32). In the Appendix
we show how the constructive procedure used to get Propo-
sitions 1 and 2 generalizes naturally to this (2 + 1)-dimen-
sional example, hence enriching itself of new features and
properties.

The solutions of the IST for KPI and K PII (see Refs. 14
and 15) can be easily recovered by choosing u, = Oand 5 =/
foro=iandu,=0F=1—ivforo= — 1.

The formulas (33) and (34) or, equivalently, the system
of linear PDE’s (A 10) satisfied by /4, have a rather complicat-
ed k-dependence. However, when u, = 0, the situation sim-
plifies enormously; in order to see that, let us introduce the
functions g and v defined as

glxy.tklv)=h (xy,tk, v
X tolxy, 1.8 (Lv))/ dolx.p 8k ), (38a)
vy, 5Iv) = olx 0,68 (L)) (x,810,v). (38b)
Rewriting the system (A 10) (including also the r-equation)
for the function g, and considering the case u, = 0 (and

Yolx.y 1,k ) = explikx + (k */o)y + 4ik 3t ]), one obtains the
overdetermined system

gx +l(k—ﬁ)g=%l)y
og, + (k* — g = i[v, — ik + B ],

(39a)
(39b)
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g +4ik>—Bg=2[k*+B*+ kB

+ik+28W, —v, ] (39¢)

The compatibility condition for the system (39) fixes the &
dependence of g in the form
g(X,y,t;k,l,V) = - iU(x,y,t;l,v)/[2(k - C(I,V))], (40)

where ¢ = c(/,v} is an arbitrary function of / and v and, corre-
spondingly, v solves the equations

v, =i — ), (41a)
ov, = (B> — ), (41b)
v, = 4i(B> — . (41c)

The k-dependence of g (and then of 4 ) implies that the
integral equation (32) can be derived from a RH problem of
the type introduced by Manakov'® in a work in which he has
generalized and adapted the RH direct approach of Ref. 4 to
2 + 1 dimensions. He postulates a nonlocal RH problem,

S xytk)=¢ “(xptk)
+ f¢ Txp51G (x.p,5k,1)dl, (42)

in order to detect and generate PDE’s solvable via the IST.
The existence of explicit cases, associated with #, = 0 (and
briefly discussed above), in which a RH structure is recov-
ered, is a confirmation of the validity of Manakov’s ap-
proach (for u, = 0) in finding a connection between the KP
equation and the nonlocal RH problem (42). Such a connec-
tion was also proven via the solution of the IST (see Refs. 14,
15, and 17). In Ref. 15 in particular, for the first time it was
shown that the KPII equation is related to a “d > problem,
whose integral representation also gives rise to the k-depen-
dence presented in (40). But the nongenericity of the above-
mentioned examples corresponding to the case #, = 0 indi-
cates at the same time that the RH problem (42) is not
adequate to capture a wide class of solutions of the KP equa-
tion.

We will show in the following that essentially the same
situation arises when one writes the DL of a class of PDE’s
associated with the 2 + 1 dimensional generalization of the
spectral problem (16). Such a generalization is'®

Wx = JWy + QW’ (43)

where ¥ = ¥ (x,y,t;k ),Q = Q (x,,t Jand J are n X n matrices,
and Jis constant and diagonal while Q is off diagonal. Physi-
cally relevant equations such as the so-called Davey-
Stewartson equation, the n-wave interaction in 2 + 1 dimen-
sions, and the modified KP equation are related to (43). The
IST associated with this linear problem has been recently
investigated and solved in Refs. 19-21.

The DL corresponding to (43) is formulated in the fol-
lowing way.

Proposition 4: Let ¢ (x,p,k ) be a solution of

@pik) + | [Pwnpin)
L
XG (xy;k,LvdS (Lv) =1, (44)
where L and d{ (/,v} are arbitrary contour and measure,
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B = B{l,v)isan arbitrary function of / and v, G is given by the
expression

G x.y;kLv)

"X

= Y8 (Lv))( f V5 B )

a

X R (x' ;L v &x'p.k )dx’'

+ gkl |9y ek, 45)
where

gk lv,a) =¥ HapyB (LR (aplv)¥apk),
(46)

R = R (x,y;1,v) solves
— R, +R,J+ [JS(xpB{LV)R ] + [Qox.)R 1 =0,(47)
with

SxpB)=W, xyB)Y¥ 5 (xp:B), (48)

and ¥, is a solution of (43) corresponding to the potential
Qolx,p). Then

V(xyk)= D (x.y:k )W x.y;k) (49)
solves Eq. (43) if Q (x, y) is given by

Q)= Q) + | 5[ [owrsum

XR (x, y;lv)dE (1,1’)] : (50)

Again we refer to the Appendix for the derivation of
this proposition. Formulas (45) and (46) imply that the kernel
G satisfies the following set of (compatible) linear PDE’s:

G, + GS(k)—S(B)G =R, (51a)

G, +GUSk)+ Qo) —(USIB) + QJG=RJ.  (S1b)

When Q, = 0 (and ¥, = explik ( Jx + »)]), the compatibility
condition for the system (51) fixes the k-dependence of G in
the form

G(x’ y;k,lﬂ’) = - IR (x,y;l,v)/[k - C(I,V)], (52)

and, correspondly, R is defined through the equations

R, =iBJR —cRJ), (53a)

R, =if—cR (53b)

postulated by Manakov in its nonlocal RH approach. This
shows again how the nonlocal RH problem (42) is an appro-
priate tool to detect the PDE’s in 2 + 1 dimensions corre-
sponding to the linear problem (43), but, unlike the case of its
associated 1 + 1 analog, it is able to capture a restricted class
of solutions only (e.g., the ones obtained perturbing off of the
zero solution).

Concluding this paper, we would like to remark that the
DL has been studied here in connection with a certain selec-
tion of relevant eigenvalue problems associated with the IST
theory, showing that the general assumptions on which the
DL is based are consistent with the general features of the
IST theory.
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APPENDIX

In this Appendix we will illustrate the constructive pro-
cedure used in this paper in order to obtain the DL contained
in Propositions 1—4. Since the main steps of this procedure
are essentially the same for all of the PDE’s related to the
IST, we will discuss them in some detail for the KdV exam-
ple, limiting our discussion of the other cases to those situa-
tions in which the procedure introduced needs to be modi-
fied or exhibits new features.

(1) The first step consists in writing the integral equa-
tion for ¢,

Yk )+ j«ﬁ(x;l W pskd A (1) = k), (Ala)
or for ¢ = ) !,
b (k) + f 8 (el gk LA (1) = 1. (Alb)

Thekernel 4 hastobe characterized a posteriori as is indicat-
ed in the following steps.

(2) In the second step one applies the spectral operator P
to(Al)[ord2 to(A2)].IntheKdVcaseP =4, , + u{x)+ k?/
4 and Eq. (Ala) implies

Yux Xk ) + L[l/fn )k (ko) + 29 (x5 A (xk )

+ Pl sk D) JdA ) = o x5k ), (A2a)

ulxjcsk ) + f ulbxjocs)dA (1)

= uoxX)holx;k ) + [u(x) — uglx)]olx;k ), (A2b)

k2 /2 _
£ k) + f (Tw(x,l)h sk

2

LKl 2w(x;1>h(x;k,l))am (l)="72wo(x;k). (A20)

4
Adding these three equations up, one obtains

(PY)x;k ) + L(Plﬁ)(X;l Jh (e ke, D )dA (1)

+ [ |ty + g
k*—1?
4

X (h” (k1) + h (x;k,l))]dxl (I)

= (Pt )k ) + (1 — otk ). (A3)

Then the requirement Py = O (Pyi, is already zero by hy-
pothesis) isolates an equation for # — u,, which, in the KdV
case, reads

(14— uolplk) =2 f dull) flkd A
+ LW )(hxx Rt

here and below we omit for convenience the x dependence.

(3) The analysis of Eq. (A4) suggests the structure of the
integral representation of # — u,, in our case Eq. (A4) im-
plies that 4 — u, must have the form

h )d/l (A4)
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u— o= [ [V + S84 (A3)
L

where the functions f, and f; are characterized in the next

step.

(4) Evaluate the consequences of the assumed structure
(AS). For instance in this specific case, Egs. (A4) and (A5)
imply

2h, = fill W'k ), (Aba)

B + [k —12%)/4)0 = £ W4 (K ), (A6b)
and one can verify that the compatibility condition for this
system implies that f; = f, = ¢§, where ¢’ is an arbitrary
solution of the Schrodinger equation (10), and also that 4 is
given by formula (11).

When applied to other examples, the procedure above
repeats exactly for the first two steps, while steps 3 and 4
adjust to the specific problem under investigation. If, for
instance, we deal with Eq. (16), after steps 1 and 2 we have

Q—Qo=£{(2-1)J¢G+¢[ G, 4+ 0)G
— Ga/ + Qo)1}dA ), (A7)

and now taking into account that Q — Q, is a k-independent
off-diagonal matrix, on analogy of (A5) we necessarily find
the structure

0-0=[ 1 suru]ar
where again R hastobe characterized. Substituting (A8)into
(A7) we then obtain

(z-1)G(zl)=R (),

G, + G2/ + Qo) — (W + Q)G =R (I )J.
System {A9) has the solution

Gkl)=R()/(z—1), R()=9)Goll W5~ '(0).

The application of our procedure to equations in 2 + 1 di-
mensions feaves essentially unchanged the first three steps,
and leads to the integral representations (AS) for KP and

(A8)

(A9a)
(A9b)
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(A8) for the spectral problem (43). Equation (A5) implies for
KP the following system:

2h, = fill Wolk ), (A10a)
oh, + by =l Wolk), (A10b)

whose compatibility condition implies that f, = f, = £,
and formula (34). Equation (A8] for the linear problem (43)
implies the system (51), whose compatibility condition is giv-
en by Eq. (47).
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A method for solving a quasilinear nonelliptical equation of the second order is developed.

We give classification and parametrization of simple elements of the equation. An equation of
potential stationary flow of compressible gas in a supersonic region is considered as an example.
A new exact solution is obtained which may be treated as a nonlinear analog of stationary wave.
A gauge structure for the equation and an analog of Backlund transformation are introduced.

PACS numbers: 02.30.Ks, 02.70. + d, 02.40. 4+ m, 47.40.Ki

I. INTRODUCTION

In this paper we present a method of solving nonlinear
partial and nonelliptical differential equations. The paper is
devoted to theory of a differential equation of second order
with coefficients depending on first derivatives. The method
is old, for we employ Riemann invariants which have been
known, really, for a long time.'~® Nevertheless, we have
found a new feature of this old theory related to the problem
of algebraization of a differential equation. We exactly solve
a characteristic cone for a Riemann wave and classify all
simple elements for such an equation. All these simple ele-
ments depend on parameters. We proved that these param-
eters are parameters of some orthogonal or pseudo-orthogo-
nal groups. [It is very important in later analysis (see Sec.
VI).] Having a classification of simpie elements we may clas-
sify simple waves. Every simple element belongs to some
submanifold F; C & *. The dimension of this submanifold
equals the number of parameters. These parameters are arbi-
trary functions of dependent variables ¢;. Since we are deal-
ing with Riemann invariants, parameters become functions
of R (Riemann invariant). Due to these arbitrary functions
we may integrate the equations for simple waves. It indicates
that it is possible to introduce a gauge structure for every
class of simple elements.

This paper is divided into six sections. In Sec. 11, we
describe a parametrization and a classification of simple ele-
ments and we write down all possible elements. In Sec. III we
deal with a physical example from hydrodynamics. It is the
equation of potential stationary flow for a perfect gas in a
supersonic region. In Sec. IV we calculate all possible simple
elements for this equation and we write them down in the
Appendices. In Sec. V, we calculate the simple wave corre-
sponding to one of the simple elements. We find a new exact
solution of the equation and examine its properties. It de-
pends on three arbitrary functions. We shift the arbitrariness
from the parameters (depending on R—Riemann invariant)
to more convenient functions. It results in some restrictions
on the arbitrary functions and on the range of the Riemann
invariant R. New freedom connected to the parameters of
the characteristic cone, and restrictions imposed on them are
new points in the Riemann-invariants method. Simulta-
neously we have obtained a restriction on the range of the
dependent variable R. This seems to be a new point also. We

 Partially supported by NSF Grant No. INT 73-20002 A01, formerly GF-
41958.
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Academy of Science, 00-330 Warsaw, Nowy Swiat 72, Poland.

2620 J. Math. Phys. 25 (9), September 1984

0022-2488/84/092620-13$02.50

have got the solution for the equation of potential flow of the
perfect gas (in three dimensions) which depends on three
arbitrary functions. Restrictions which we had to impose on
the functions lead to physical effects. The solution may be
considered as an analog of a nonlinear stationary wave. We
have obtained planes of *““density and pressure nodes” and
planes of “magnitude of velocity antinodes.” In Sec. VI, we
deal with a “gauge” structure for the equation and its simple
waves. We get a transformation of gauge type connecting
two simple waves (from the same class). The transformation
may be treated as a nonlinear representation of a gauge
group originating from the orthogonal or pseudo-orthogo-
nal group. The transformation is similar to the classical
Bicklund transformation.

ll. THE ALGEBRAIZATION PROCEDURE

Let us consider a system of partial differential equations

v=12,...,n.
au' .. u) _8_; wix' x4, x =0 s=12,.,m mzl
ox =12, (2.1)

x = (x"x%..xNe¥ , u(x)= (u'(x),u’(x),...,u (x))eF",
which is a quasilinear homogeneous system of the first order
with coefficients depending only on the unknown functions.
This system may be overdetermined, i.e., m>/. Let us sup-
pose that this system is a nonelliptical one. This indicates
that there exist some nontrivial solutions of the algebraic
system of equations

a’y’A, =0, where rankl||a]"A, || <!/ (2.2)
for vectors yeR 'and AeR ".

The above algebraic system of equations adequately
specifies so-called knotted characteristic vectors in hodo-
graph space, & = R (i.e., the space of the values of the
functions »”) and in physical space € = R " (i.e., the space of
independent variables). The pair ¥ and A will be called a
knotted pair iff it obeys Eq. (2.2). This fact will be marked by
y~A.Matrix L = y/A created by a pair of knotted vectors
will be a simple integral element, because rank
IL Z{uo)l| = 1, where u e

It is convenient to consider A as an element of space % *
which is the space of linear forms, *34:4—R '. On the
other hand, in the terminology of tensor calculus if we con-
sider xe% as a contravariant vector, then A€& * is a covar-
iant vector. In these terms the element L is an element of
tensor space T, 77" ® & * of the form L = y ® 4. Now we in-
troduce a simple wave, which will suggest a separation of
simple integral elements from a set of integral elements.
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Let the mapping u:D—57", DC & be any solution of the
system (2.1). We call # a simple wave for a homogeneous
system if the tangent mapping du is a simple element at any
point x,eD. Let us consider the smooth curve: I':R—f(R ) in
hodograph space % parametrized by R, so the tangent vec-
tor

df(R) _
R TVR)

is a characteristic vector. Then there exists a field of charac-
teristic covectors A (4} connected with ¢{ f(R )) specified on
the curve I':A = A ( f(R )). Hence we may state the following.
If the curve I"C 7 obeys the condition (2.3) and if () is any
differentiable function of one variable, then the function

u = u(x) specified in an implicit way by

u=f(R),

(2.3)

(2.4)

R=g(4,(f(R )W), where ay/d, =0
is the solution of basic system (2.1). The solution is called a
simple wave or Riemann wave.

A proof may be obtained by direct differentiation of the
implicit relations (2.4). The vector A in (2.4) specifies the ve-
locity and direction of the wave propagation. The curve I”
fulfilling the condition (2.3) is called a characteristic curve in
hodograph space 77°. It means that if the mapping u: & —.%
is a simple wave, then a characteristic curve in space 7 is an
image of mapping u. Parameter R, specified on this curve, is
called a Riemann invariant.

Now let us consider a nonelliptical equation of the sec-
ond order,

o (2.3,,2) 2 g

S T \ox axtTT gxt) axix!
Equation (2.5) may be transformed, by introduction of new
dependent variables, to the system of equations of first order,

(2.5)

S a2 <0, (2.6)
=1 Y ox’

ou'  du _

ax’  9x ’

where v’ = (3¢ /9x)), i = 1,2,...,n.
Rewriting the system of equations (2.6) by means of
simple integral elements we have

n

Z a; y4; =0,

=1

(2.7a)
]

K

i=1

7},{], — 7/1',11. =0, ij= 1,2,..,n. (27b)

From Eq. (2.7b) we obtain that vector A is proportional to
vector y. Thus from Eq. (2.7a) we get a quadratic form with
respect to variables A,,4,,....4,,,

n

QA1 Az A,) = z a;AiA; =0.

ij=1

Equation (2.8) is the equation of a cone of the characteristic
vector 4, specifying the velocity and direction of propagation
of the simple wave.

Our aim will be to find the parametrical equations of
this cone and at the same time to parametrize covector A.

To do this we transform the quadratic form Q to a ca-
nonical form, i.e., we diagonalize matrix of the form Q,
A = (a;). Hence we look for eigenvalues of this matrix and
write the secular equation

det(4 —wJ)=0. (2.9)
We also search for a matrix B which diagonalizes the matrix
A:

(2.8)

W, 0
@,

B7AB = , BT=B"", (2.10)
0 ‘©
where w,@,,...,», are the eigenvalues of matrix 4. The ma-
trix 4 is a symmetrical real matrix and it has real eigenval-
ues. There always exists at least one such orthogonal matrix

B responsible for a rotation in #-dimensional Euclidian
space from variables v = (v',...,0") to variablesA = (4 !,....A "),

vl

2

=Bv and

n

(2.11)

v

n

QAyhy) = @y(vy) + ‘02(1’2)2 + -+ o,, )2
= (BTAB),w, .

We assume that w, #0, i = 1,2,...,n. The case with w; = 01is
examined separately.

Now we aim to parametrize matrix B, i.e., we find all
B’s obeying (2.10).

Let a matrix A4 possess K different eigenvalues with or-
ders [, j = 1,2,...,K, respectively, so that 2}‘: 1 §; = n. Thus
we obtain the following formula:

[
QA hgds) = 3 o, ( D vf,‘“,), where p, = 3 /,, and
w=1

v=1

i=1

(" w, 0
@,
/ 1 @,
. @,
BTAB = C

0

-
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-
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Let a matrix B, be any matrix diagonalizing the matrix 4.
Let us observe that any orthogonal transformation of varia-
blesv,,v,,...,v;, doesnot destroy the diagonalization, i.e., any
orthogonal /, X/, matrix C|, acting on the first /, variables,
does not change the diagonal form.

So a matrix B is defined modulo the following matrix:

rC, |}ll 0 3
—— 1
B, = l 1

1 n, (2.13)

. 1J
where C | = C | '. The same may be said about the remain-
ing subsets of variables v,, i.e., sequences of /; elements.
The action of the /; X I, matrix C| = C ;= ! (the orthogo-
nal one) cannot destroy the diagonalization. It is easy to see
that matrix C; corresponds to the following » X n matrix B,,

")
\
B, =
n,
0 1
y
L qz ‘1)
U (214
where n,
i—1 k
Q1:ZIH 9> = z ;.
iz j=ix1

Hence matrix B is defined modulo the product of X
matrices B, of the form of (2.14). From that we obtain

K
B=B,[] B (2.15)

=1

where B, is an arbitrary, but established, matrix obeying
(2.12). The order of multiplication of matrices B, is irrele-
vant, because all matrices commutate one with another. So,
we see that the problem of parametrization of B is reduced to
parametrization of each of the X orthogonal matrices C,.
Each of these matrices is responsible for an arbitrary rota-
tion or reflection in /;-dimensional space, thus it depends on
4 I.(l, — 1) parameters which are generalized Euler angles
and some set of discrete parameters.

So we have C; = C,(a};), where j, = 1,2,..., ;(; — 1)/2,
wherei = 1,2,....K.

By enumerating them in the order of their occurrence,
i.e., first parameters of matrix C,, then C,, etc., we can write

B =Bla,a,,...2,,,K,,K;,...K;), where
l K

— L —1

5 2’1 ( )

and K ,K,....K; correspond to reflection.

m =

(2.16)
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Finally, we have

y~Ai = Bla,t,...a,, ,K,K,,..K v . {2.17)
After having matrix B parametrized we deal with form Q in
coordinates v, and consequently with the equation of the
characteristic cone in these coordinates. So we have

K 2
> a),(z U§,+H)=O
y)

(2.18)

i=1 N
[compare (2.12)].

We find a parametrical equation of this cone. In order
to do this we write (2.18) in the following form:

zv; =0, where z; is one of w, . (2.18")
ji=1
Equation (2.18')is the equation of a (n — / }-dimensional qua-
dric in projective coordinates in the canonical form.*
Let us suppose that v; 70 and divide both sides of
(2.18') by v; and introduce new coordinates
i

g, =v/v, j=12,..n, j#j.

One gets
P
> z0l+z, =0. (2.19)
i=1
i
This equation can be written in a parametric form,
1M om
O; = 0,(TTieesTr_a)s J=12,05n, j#jo. (2.20)

mm o

T|sTas-Tn_ o are internal parameters of the quadric where-
moma

as functions o;(7,7,,...,7, 2} are expressed by either tri-

gonometric or hyperbolic functions with respect to a type of
quadric (2.19) according to F. Klein’s classification.* Thus,
we parametrize vector v,

m AW i
v, =0, (7’1,72,...,7',,_2)7',._ 1y JFJo> (2.21)
()
Ufo = Tn—1, 7-,,,1#0,
)
where 7, _, is a new parameter.
In a case when v; = 0 we have
n
2 zv; =0, (2.22)

=1
j‘#jo
50 in this case the dimension of (2.22) is smaller than (2.18').
Similarly we choose v, #0, j,#jo j, = 1,2,...,#, and
introduce new variables
)

g; = U]'/Ujl > j#jly J?éfo . {223)
We obtain Eq. (2.22) in the form
n 2)
Y z 0742 =0. (2.24)
Jj=1
it
Jti
Now we write its parametrical form,
2 @2 o
g, = oj(fl,rz,...,r,, — 3)
M. W. Kalinowski 2622



{one parameter less than above) and get

2) ,(2) (2 (2) 2}
Uj = 0'1.(7'1,7'2,...,7-"—- J)Tn — 2y ]#jl’ j#]o ’

(2} (2)
Vi, = Tn-2, Th—2 #O’ (2'25)
y, =0,

and we proceed likewise, i.e., we consider the case
v, =0 =v;, and choose v, #0, etc. After K steps of this
procedure we get the following equations for v:

(K)((K) (K) (K} )(K) K)

UV, =0\ TTos Tn— (K+ 1) Thok,Ta-k70,
A v =0,
v=0,1,.,K~—-2
(2.26)
3
Uj.(,. =Tn-K;
A J#i -
v=0,1,2,..K— 1
It is easy to see that we exhaust all possibilities if
n=K,,, + 1. Then we have
m=1m—=1)  (n—1)
v,= o -7 , 1 #0,
n—1
U, = T1 s
(2.27)
r#j,
A

v=0,1,.,n~-2

and the rest of v; equal zero. The last case where v =0 is
uninteresting.

At this stage we can present full parametrization of con-
vector A, which divides a set of 4 *sinto (# — 1) disconnected
types. Since we have

/1 = B (al,az,...,am ’KI’KZ!"‘7K1)U 5

where a,,a,,...,a,, are generalized Euler angles, and
K. K,,. K, equal 1 or [ — 1) and correspond to reflections

s (1,00 ) (n ~

UI(TI’TZ""’Tn—Z)
(1) (1) (1) (L
0'2(7'],7'2,...,7'"_2>

(1) (n (m (1)
(h (y 0}0_1(le729-'-’rn-2)
y~A =Bv=2_~8
1 Th_1

(1) (1) (h n
0}0+ 1 (TlsTZ)"-’Tn — 2)

(1) [ON )]
g, (71,7'2,...,7',, _ 2)
= 7
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("W, m )
UI(TDTZ""’Tn—Z)
A
UZ(TI,TZ""’T’IWZ)
W omm

aja—l(TI’TZ""’T"—z) .

— Jo
1‘4

n M (n {1

~Bla, &g, K1, K5, . . K} )

2) J228)

) 1) i
\. 7, (71,7'2,...,7',, _

Jois the number of the row in which 1 appears. It is easy to see
thatA dependson (m + n — 2)arbitrary parameters and on/
@

integers equal to { + 1). For  we have

4 =
2) £2) (2) @
0’1<7'1,7'2,...,T,, _ 3)
2} £12) (2) 2)
0’2(7-1)7-21~-~17-n~ 3)
2} 2 ¢ (2}
2y @
y~A ~Bla,....a, KK —Jo
(2} (2 (2}
_[“ + 1 (TlaTZ"“’Tn - 3)
21 2 2}
—
2} (2 (2}
41 (TI’TZ""’Tn~3)
( 2 (2 (2
OH(TI,TZ,...,T,,A3)
. J
(2.29)

It depends on (m + n — 3) arbitrary parameters and / inte-
gersequalto + 1. Notethat the 0 appears in the jth row and

that the | appears in the j th row.
(n—k)

In this way we may get that ¥ depends on

{m + n — [K + 1)) free parameters and / integers equal to
(£1).

Then in the column on which B (a,,...,a,,,K,....K})
acts, zeros appear at the places of numbers j,,j,,..../x _ , and
at the place of number j, | the integer 1. The last element
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(n—1) (n—1)

y ~ A ~Bla,a,...a,.K,,..K)

N\
.]nfl

(2.30)
(=1
(where o 5£0)has only zeros in column v except the place
of number r and the place of number j, , and it depends on
m arbitrary parameters and / integers equal to { + 1).

The division and parametrization of simple elements is
not unique. It depends on the choice of sequence
Jos J1s-sJn _ 2 - For any other choice it will be, in general,
different.

Now, let us consider the case where matrix 4 has a zero
eigenvalue. Let w, = 0 and have an order /,. In such a case
we may proceed as in the (n — /,)-dimensional case starting
with a parametrization of quadric (in projective coordinates)

i zv} =0

j=4L+1
assuming that v,,0,,...,v; are arbitrary, i.e., v; = u,,
j=12,..1,.

Thus we get a classification of simple elements of Eq.
(2.5). Let F; C & * be a set of all simple elements belonging to
one of these classes. If A€F,, then A is given by one of formu-
las (2.28), (2.29), etc. Thus we have found many types of
simple elements depending on various numbers of free pa-
rameters. Each of them has its own type of simple wave.
Hence, according to Eq. (2.4) we have

0
() ] df U] ) )
u=f(R’), where R A(S (R},

(2.31)

(2.32)
il
R'=¢p.x"), A€F,,
where / enumerates the types of simple waves admissible by
(2.5). Due to free parameters, which are functions of u, and
consequently of R ‘ we may integrate (2.32) and get its exact

solutions. It is easy to see that F, is a submanifold of &*
whose dimension is equal to the number of parameters.

lli. EQUATION OF POTENTIAL FLOW OF A
COMPRESSIBLE, PERFECT GAS

Now we consider the equation of potential of velocity
for a stationary flow of perfect gas,

(CZ - ¢i)¢xx + (CZ - ¢,\21)¢yy + (c2 - ¢§)¢zz
- 2(¢x¢y¢xy + ¢x¢z¢xz + ¢y¢z¢yz) =0 ’

where

(3.1)
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C=c—[(F-1)2]¢2+¢2+¢2) and v=V¢ (3.2)

(¢ is the velocity potential and ¢ the velocity of sound). Equa-

tion (3.1) is interesting for us in the supersonic region
0<c’<gi + o5 +47.

In the region the equation is nonelliptical and we have®

¢ (2/11)@’2‘ +¢; +8i<c (%_1). (3.4)

Now we look for the solutions of (3.1) provided that (3.4) is
satisfied. Using the fact that for a perfect gas ¢* = #p/p,
and from the adiabatic equation p = ap;”, a = const, we can
calculate p, and p from (3.2),

1 ¥ _1 VT
po=[;ﬁ7(cé— ; (¢i+¢§+¢§))] ,

=] (@ - Tt rer o)
(3.5)

We are interested in the solutions of Eq. (3.1) that are given in
terms of the Riemann invariants. Following the method we
transform (3.1), by introducing some new dependent varia-

bles, into a quasilinear system of equations of the first arder:

(=@l +(E—@dps, +(— @),

(3.3)

— 210291, + P1P3@1: + Popapa.) =0, (3.6)
Py — Pax =0,
@1 — @3 =0,
Prz: —P3y = 0,
where
P =91, =@2P. =@ (3.7)

Thus Eq. (3.1) is transformed into the overdetermined sys-
tem of four equations for three functions.

IV. SIMPLE INTEGRAL ELEMENTS
Now we write the system (3.7) in the form (2.8) intro-
ducing covector A,

QA1 A245)
= —@IA}+(E—@ih; +(E—pi]
— 2@ @A ihs + @ipsdiAs + @A) =0. (4]

Following the procedure described in Sec. I, we parame-
trize covector A. To do this we diagonalize the form (4.1) and
write the secular equation

det(d —uJ)=0,

where
el —ewp —0ups
A=| —pp, (E—93) — P23 (4.2)
— $1P3 — s (F—@3)
From (4.2) we get the third-order equation for a value g,
(@ —p’ — @1 +@2 +@3)—p)=0. (4.3)
Hence one obtains two different eigenvalues
p=¢, = —(pl+e:+ei) (4.4)

from which the first has an order 2. Thus the quadratic form
Q reduced to the canonical form is
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QUAA) =yt + 1)+~ (ol + o3 + @353 =0(;1 5

i.e., the parametrical equation of a hyperbola.
If y, =0, then one gets

Now we find par'ametrical equations for (4.5). Supposing S —a =0, (4.8)
that y, 540, we simply get . 49
2 = g a/C y = i 1 . .
X yio1, whee x=22, y=2 @) Y2 = Flase)ys
(a/¢) 34 4 In our case there is only one eigenvalue of order larger than
wherea> =@} + @3 + @3 — ¢*> 0 (supersonic flow). 1, i.e., 2. Thus the diagonalizing matrix B will depend only
Then we have on one parameter a, B = B (a). Matrix B may be easily built
Y=sinhp, X=(a/c)coshp, (4.7)  from eigenvectors of matrix 4 and one obtains
1
— (¢72 sina + £ cosa), i((— H¥p, cosa + (— 1)K+‘ﬂ¢i§—sina), 128
X2 X1 X2 X1 X1
_ 1\ K+1 .
Blal)= L (gz), sina — 2293 o5 a) , (=1 (gv, cosa + L3 sin a) , L3 , (4.10)
X2 X1 X1 X1
K
/ﬁ cos a , M sin a, &
X1 X1 X1
r— . . »
K=0,1,1=(— 1)*, where a is a parameter depending on However, in a certain case a degeneration occurs and
@ 19293 and for K = O we get only one parameter = p + «, whereas for

¥i=¢i+ei+e:, xi=¢itel.
Integer / equals { + 1) and is connected to a reflection in two-
dimensional space, whereas a is connected to a rotation. Ac-
cording to Sec. II we have

oo 1
y~A =Blal)| X (4.11)
Y
and
@ @ 0
y~A =B(al)|1], o=Fa/c. (4.12)
o

Then by inserting (4.10) into (4.11) and (4.12) we get explicit-
ly the form of simple elements. The elements are presented in

Appendix A (F, and F,). "
J

According to results given in Sec. II, 4 depends on two
o)
parameters @ and p, whereas A only depends upon a.

Let us consider form (4.5) once more, now assuming
that y,50, and let us introduce

X=y/ys, Y=p/p;. (4.13)
Then we have

X2+ Y?=(a/c) (4.14)
)

X=(a/c)sinp, Y={(a/c)cosp, (4.15)

i.e., a parametrical equation of a circle, p is a function of ¢,
i=1,23.1f y; =0, weobtain y, = y, = 0, thus a zero case.
We have

()
yi~4A =Bal)| X
1

By inserting (4.10), (4.15) into (4.16) we obtain the explicit

form of simple elements. They are presented in F;. (Appen-
(1)
dix B). 4 depends on two parameters: @ and p.

(4.16)
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(1)
K=1, p—a=w. Inthis case A depends, really, on only
one parameter.
Let us consider (4.5) again, assuming that y,#0. We
introduce new coordinates

Y=p/y,, X=y./p (4.17)
and obtain from (4.5)
Y a/cf —X*=1, (4.18)
and in a parametrical form
Y=(a/c)coshp,
(4.19)
X =sinhp.
Thus we have
(17) X
Yo ~A4 =Bla,l)]| 1 (4.20)
Y
If y, = 0 we obtain from (4.5)
¢y —ay; =0, (4.21)
yw="~&la/c)y;, €*=1 (4.22)
and
@ 7 Za
Yy ~A =Bla,])| 0], where 0 = —. (4.23)

1 c

Inserting (4.10) into (4.20) and (4.23) we achieve the explicit
1" 2"

form of simple elements (A ) and (/l ), which are presented in

Appendix C, (F., F,-).

Thus we have found here several types of simple ele-
ments which are used to construct solutions, i.e., simple
waves and their interactions, so-called double and multiple
waves. In Appendices A—C we present all classes of simple
elements—F,, F,, F,., F, ,F., F,. for(3.1).

V. SIMPLE WAVES

Now we present the simplest solutions of the system
(3.1), namely those that have been constructed on the basis of
homogeneous simple integral elements. The method of find-
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ing these solutions are presented in Refs. 1-3. In this section
we deal with a method of solving Eq. (2.3). We use the results
of Sec. II concerning parametrization of simple elements.
The crucial point of our method is using the freedom of pa-
rameters occurring in simple elements. According to termin-
ology presented in Refs. 1 and 2, the elementary solution of
the homogeneous system has been called a simple wave.
Those solutions may be interpreted as waves since they show
moving disturbances, the profile of which changes in the
course of propagation [a sign of this is the implicit form of
the relation (2.4) for the R (x) function]. The form of solution
of (2.4) suggests that covector A may be regarded as equiva-
lent to the wave vector (w,k) which specifies the velocity and
direction of propagation of the wave. The specific profile of a

simple wave is explicitly determined by its initial data. A
certain amount of freedom is connected with the freedom of
choosing one free function, which is a function of one vari-
able. The above remarks concern all simple waves which
have been found. There exists also another freedom, con-
nected to parameters in simple elements in our method. This
freedom is of another kind and origin. Due to it we may
integrate Eq. (2.3) and obtain solutions with (g + 1) arbitrary
function of one variable, where ¢ is a number of independent
parameters in the simple elements. For all functions we ob-
tain a certain restriction and it seems to be an interesting
point in the method. The simple wave obeys conditions (2.3)
and (2.4). By substitution of the simple integral element
(4.11) into Eq. (2.3), we obtain for K =0

J
2 _ 12
P _ Wi ) [ — ({pz sina + ¢‘—%cosa) + (cp2 cosa — L3 gin a) sinhp] + %—‘coshp,
dR X2 X1 X X1
d (Xz _ cz)l/z
P> AL [((pl sina — 223 cos a) — ((p, cosa + 223 sin a) sinhp] + %coshp, {5.1)
dR X2 X1 X X
_a2y1/2
dps _ Xty =€) [cos @ + sina sinhp] + F2coshp.
dR X1 X1
Now we introduce the new dependent variables y,, y», and we find the solution, which is a simple wave,
o = @/¢,. We get from the system (5.1) @, =(R)
1 — %1 ’
&zccosh;»c, P, =@AR), 5.4
dy, :i[ — & _Xg)l/z(ﬁ — ey @3 =@3R),

dR y,

X {cos & + sin a sinh p) + ¢y, coshp], (5.2)

d_‘j(_ arctan u, = ((y? — ¢?)"*/y,) (cosa —sina) .

Let us observe that quantities & and p, existing in Egs. (5.2)
are arbitrary functions of R. Hence, it is convenient to shift
the arbitrariness from « and p to y, and y,. The right-hand
sides of the equations for y, and y, depend on @ and p but
they do not contain derivatives of these functions. Thus as-
suming that y, and y, are arbitrary, we obtain equations for
a and p. These equations will express a and p in terms of
functions y, and y, and their derivatives with respect to R.
The condition of solvability of algebraic (or transcendental)
equations for @ and p provide us with restrictions on y, and
Y- In such a way the problem of solving the system of equa-
tions for y, and y, is reduced to the problem of solving alge-
braic equations and searching for restrictions for the arbi-
trary functions y, and y,. We will derive a set of such
restrictions. After expressing @ and p in terms of new arbi-
trary functions with restrictions we insert these relations
into the third equation of (5.2) and to a covector (4.11). In this
way, on the right-hand side of this equation we have the
functions of R and we can integrate the equation

R 2 2\1/2
1y = tan ( Wi—e)”

Ro X2

d, = const. Solving equations

Bo=@/P2, X1=Or1+@}+@5, X:=¢1+¢5,

(cosa —sina)dR '+ do) , (5.3)
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oY {n {n
R=V(Ax+Ay+4:2).

It is easy to see that the conditions for y, and y, imply some
restrictions for the range of parameter R and consequently
[see (5.4)] a restriction for the function ¥. This restriction is
responsible for the fact that the function ¥ hasits rangeina
certain subset of the real axis.

Now let us realize this program. For convenience of

calculating we assume that
(5.5)
and we find restrictions for H and G (H and G are functions
of R).
The first restriction for e is of course (3.4) and we have
22/ + N\<er<c (/7 — 1) (5.6)

By substituting (5.5) into equations one and two of (5.2) and
then using the relations between trigonometric and hyperbo-
lic functions we get

i =", yi=¢*°, where &<

H
coshp = —d—H,
¢ dR
(5.7)
24B 47 —1
t? — + =0,
B> 41 B*+1
where
¢+ G H)
4 dR
- (eZH— e2G)1/2(e2H_c2)1/2 ’
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2H 2 1/2
stinhp=sfz(e_(‘m) _ 1) ,

 \dR.
(5.8)
t=sina, cosa = &(1 —1%)"2,
E1=¢61=1.
Thus, we get the first restrictions
A. 1<coshp =££1£,
¢ dR
(5.9)
B. |7|<1.

At the same time the quadratic equation (5.7) (second equa-
tion) must have real roots, so its 4 cannot be negative. The
latter condition yields

B?—A47+1>0. (5.10)

By inserting 4 and B into (5.10) we obtain the following con-
dition:
a,zi — a,z5 + a32,2,>0),

(5.11)
dH dag
zl = 222"
dR dR
where
a, = e _ H+ G _ 220

a, =20, a,=2%"°>0.

Supposing that G # const, we introduce the new variable
2y = z,/z, and we obtain
(5.12)

Now we present the conditions for which (5.12) will be al-
ways satisfied regardless of the value z;. By doing this we
avoid differential inequalities that are hard to satisfy. These
conditions are the following: 4, of the quadratic equation
(5.12) must be nonpositive, whereas the coefficient of z2 must
be positive. So, we have

04, = _e4H+02eZG+ez(G+H)_CZeZHy

a,z5 + asz, — ay>0.

(5.13)
(5.14)

The condition (5.13) is stronger than (5.14) and it is sufficient
to fulfill only (5.13). By inserting (5.5) and (3.2) into (5.13) we
obtain
0<(F + 1)e*" + (77 — 3)eX ™+ C) _ 2¢2(e2C + ),
{5.15)
Using (5.6) we easily conclude that 2c} — (% — 3)e*” > 0, so
finally we have

a6 [ (F — 1)e*? — 2¢2 ] 2
2c} — (- 3)e*

Let us turn now to condition B. We solve the quadratic equa-
tion with respect to ¢ and we get

AB + (B2 — 424+ 1)'/?

O<a, = ot _ QH+G) _ 22H

(5.16)

t, = 5.17
1,2 B2y ( )
We choose the root with the smaller modulus,
A _(R2_ 42 1/2
1=, ALBI—B AT+ )7 a5y

B?4 1
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Now we will prove that
|4 L1B] —(BF — 42+ 1

3 (5.18)
when B2 — 42 + 10.
Let us consider the two cases
|4||B| —(B*—42+1)V3<0, (5.19a)
|4|-1B| — (B — 4%+ 1)"/?>0. (5.19b)

(a) We start from an obvious inequality ([4 | + |B |)*>0
and we have

(42+ B> +2|4|-|B|)B*+ 1)>0, (5.20)
ie.,
A’B*+ A+ B*+B*42|4||B| +2|4|"|B|B*>0
(5.21)
or
BI-4%+1

<B*+14+A?B>4+2|4||B| +2B>+2/4||B]
=B*+1+14]|+|B|? (5.22)
and from that (B2 — 4%+ 1)"/2 — |4 |:|[B|<(B* + 1) or

B2—A42+1)">— |4||B|)/B* + 1<1. (5.23)

(b) We have B? — 4% + 130, that is

A’<B?*+1. (5.24)
So,

A’B*<B*B*+ 1)<(B*+ 1), (5.25)

|[4-B|<(B%>+1). (5.25")
And from that |4B |>(B* — 4% + 1)"/? we have

4B —(B7 A+ )P (5.26)

B*+1
Summing up, we see that |z |<1, so condition B is satisfied.
Now let us turn to condition A. This is a differential
inequality which may be solved by applying well-known re-
sults.® We have

e dH

—>»1, HR\Y=H, 5.27
o IR (Ro) = H, (5.27)
and the function P obeys the equation
1 dpP_ 1 and P(R,) = e™. (5.27a)
¢(P) dR

Using the definition of ¢ we can write (5.17) and (5.27a) in the
following form:

H
diR[ - arcsin (KZCOIL/Z_"—)J > 1(5.28)
and H(R,) = H,,,
-i— [ arcsin (—“W)] =1 ,
dR X —1 Co
(5.28a)
P(Ry) =™,

From (5.28a) we get

2 . ’ 2
P(R)=c¢c, > 1 sm[ Z”-I(R—RO)
+ aresin ( H 1 é)] . (5.29)
2 Co
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We have

37 _ 1173 oHR)
arcsin( F—1)/2e )
# —1 o
> 2 arcsin (‘(% — /2 PR )) (5.30)
Z —1 Co
and
el Rd = P(R,) = e (5.31)
(see, e.g., Ref. 6), hence
. 2
e>c, 7 1 sm{ %—I(R—RO)
H()
-+ arcsin (M)] , (5.31a)
¢
eH R _ oHo ’
Simultaneously we have
2 HR) 2
4 e < , 5.32
‘\ F+1 ‘\ ¥ -1 532
2 u 2
Co e g 5.33
x+1 ‘\ # -1 (3-33)
Since P(Rg) = ¢y v2/(# — 1), for
Ry =R, + A -1 (% + 2K7
— arcsin (i /ﬂ e”")) , (5.34)
Co 2
_J

For cos @ and sin a we have the following expressions:

2H 2 172
sina:%,[eGi(H-G)("—(ﬁ) —1) - [(
dR > \dR

X [i oH (d_H)z (e — ¢20)1/2,(2H _ c2)l/2] ! ,

c2

dR

o (- - (2D -

"=l ]

4
X IZL“ e2H (d_H) (e ZG)
c dR

——eZG(diR(H——G)2+2eG

dH\? 1 d
x|(5R) @ - e e G- (v
eH dH 1/2
o e () )"
coshp sinhp = R
(5.39)
where
2 g2 =2 — 1.

Of course, expressions (5.38) and (5.39) should be inserted
into covector A, like expressions (5.37).
Now let us consider the following equation:
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fon-) (20 )"
|

K=0,+1+2,...,
we have
e = Co 2 . (5.35)
5 —1
We have, of course,
Re, — Ryl =2 —1)7. (5.36)

Hence, function ¢” ®!is defined in the interval (R, + oo ) for
an established but arbitrary R,

At points Ry, ¢* = 0, the magnitude of the vector of
velocity of flow is maximal, and simultaneously pressure and
density become equal to zero. Thus, the solution of the sys-
tem (5.1) is

@, =1e°sinK(R),

@, =1m°cos K(R), 771 =m =1, (5.37)

. SH 2G
Py=MN ve —€ ’

where

G
R, e

n n (1

¢'=const, R=¥Y A x+Ay+4,:2),

R 2H _ 2y1/2
K(R)zf (cosa—sina) C——V " gr 4o,

Re(Ry, + o)=L .

The function ¥ takes values only from the interval L. The
conditions (5.16), (5.31a), (5.32), (5.33) are implied on func-
tions G and H.

) e e (o) ]

L
(5.38)

o]

(n m m

Ry = V{,(Rg)x + A5(Ri) y + A3(Rk)2),
RyeL,

where R is given by (5.34). For a given K, Eq. (5.40) de-

scribes one or several planes with a normal vector A(R)
(M (M (n

= (A1 (Rg)A2(Rk)As(Rk)). If the equation R, = ¥ (r) pos-
sesses n roots r;, i = 1,2,...,n, ¥(r;) = Ry, then there are n
planes:
AR X + Ax(R)y + As(Ri)z =71, ,
i=12,.,n

(5.40)

(5.41)
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Thus, they are parallel planes. When the function ¥ is single
valued we have only one plane. For different X, #K, the
planes belonging to K; do not have to be parallel and in
general they cross each other. The sections of planes may
also cross.

Let us notice that (5.41) is a place at which both density
and pressure disappear and the magnitude of the velocity
reaches its maximal value. So in fact they are planes of
“nodes” of density and pressure and of “antinodes” of the
magnitude of the velocity vector. Because planes may cross
each other we have also straight lines and points of “nodes”
and “antinodes.” Thus, the above solution may be treated as
a nonlinear analog of a standing wave.

Now let us turn to the case G = G, = const, dG /dR

= 0. We must specify the condition for 4 >0 [compare
(5.11)]. Then we have z, = 0 and (5.11} is reduced to

a,z3 0. (5.42)
Supposing that z, #0, H #const we obtain a,>0, which by
using (5.14) is reduced to
And now we may repeat all the considerations concerning
the conditions A and B and achieve the same results as be-
fore with the substitution G = G, = const. The only differ-
ence will be another restriction for the lowest value of ¢” and
e'* and the absence of restriction (5.16).

The case H = const leads to a nonphysical solution.
From the equation e” (dH /dR ) = ¢ cosh p>c we have that
¢ = 0, which leads to vanishing of density and pressure
everywhere, thus to the absence of gas.

For all simple elements from Appendix A it is possible
to repeat the considerations and it was done in Ref. 7. But the
most interesting case is described in this section.

VI. GAUGE STRUCTURE AND “BACKLUND
TRANSFORMATION”

Now we construct some geometrical structures for sim-
ple (Riemann) waves of (2.5). These structures establish rela-
tions between Riemann waves of (2.5) and allow us to intro-
duce nonlinear transformations connecting two Riemann
waves [exact solutions of {2.5)). The nonlinear transforma-
tions are of gauge type, and may be treated as “Backlund
transformation” ® for (2.5).

Namely, let matrix 4 = (a;) have K eigenvalues w,,
i=12,.,K,eachof order /,, 5_, I, = n.

In such a case we have a natural group acting on simple
elements A. I[IX_, ® O(/;) each of the group O(/;) acts on the
coordinates v;,j = 21_4 [, 2.2\ |, + 1,..,2. _, /, without
destroying the diagonalization of matrix 4. It is easy to see
that a,,a,,...,.a,, are parameters of the group II¥_, @ O(/,),
m=2 50— 1)

Simultaneously we can connect the group O( p,¢) with
the cone

(5.43)

7
> & vi=0 (g is equal to one of w;). (6.1)
j=1
Let{, =&,/ {;|, where &, =sgn{; . {6.2)
By transforming v; to v/, j = 1,2,...,n,
Uj' == fé']l Uj s (63)
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we transform (6.1) into

% 2
Z &v*=0,
i=1
i.e., into a canonical cone. The group O p,g) conserves a
quadratic form

QW) =3 %, o7,

i=1

(6.4)

(6.5)

where p = number of integers &, equal to 1, ¢ = number of
integers & ; equal to ( — 1) in the sum (6.5). Obviously
p + g = n (we assume there exist no zero eigenvalues).
Now, let us notice that classes of simple elements, and,
in consequence, simple waves, which are constructed ac-
cording to Sec. II, are related to the choice of a concrete
chain of subgroups O( p,g). This chain ends on the two-ele-
ment group {e, — e} or the trivial group {e}, hence
O(P’q)DO(Plaql)DO(pz,%)D"‘g;2,1 ‘) , (6.6)
wherefor p;.q;, p;. |,4; ., wehave the following relations:
either p, =p,, 1,¢, =¢;i, +1

orp;=pi.+1, ¢=64.,.,
Po=P40=4-

In this way the dimension of the space in which the
group operates, diminishes to 1 according to Sec. II. The
choice of the sequence of subscripts jgf,,..../x _ 2 corre-
sponds to one of the possible chains of subgroups (6.6). Thus
with each simple element we can connect in a natural way
the following group:

L=]e¢ H O(li)] ® O(p:g;).

r=1

6.7)

(6.8)

The origin of each factor of the simple product is, of course,
different. In general, we connect with Eq. (2.5) the group

L=[e ] 0] ® 0lpa.

r=1

(6.9)

Group L, acts on a submanifold F, C &* (the manifold of
simple elements of a chosen class according to the classifica-
tion from Sec. II). Since a simple element is a function of a
point of hodograph space # (the space of values of the solu-
tions of the equation) we may connect with the equation very
natural fiber bundles. For every class of simple elements we
have a fiber bundle P; over the base space #° with structural
group L., typical fiber F;, and projection 7,:P,—5¢.

It is easy to see that dim(L,;) = dim(¥F}) and for every
simple element, A€F; we have

/lOGI?i b
A=gAd,, where geL, and (6.10)
Ao = const .
Taking a local section of P, we get
Aw)=gla@)i,, ueP CH, (6.11)

where « is the set of all parameters of the group L,. But in the
case of simple waves we have Riemann invariant R (parame-
trization in hodograph space 7#°). Thus we obtain a special
structure, a bundle II; over the base space Z (a straight line
of the Riemann invariant) with structural group L,, typical
fiber F,, and with a projection II,:/7,—~Z. For every local
section of IT; we get

AR)=glaR)y, ReVCZ. (6.12)
Every local section fgives us a simple wave belonging to a
chosen class of simple waves (simple elements). If we have
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two local sections fand g we have two different simple waves and simple waves and we obtain the following gauge groups:
of the same type. If we change the section from f to g, we {n

change functions a(R ) to B (R ) and we get L, =02)20(L,1}, L, =0(2)s0(2),
salR ) =hREBR), A@R)=HRABR), | oo (6.16
h(R)EL . 613 C 2

Thus we see that the action of the “gauge group” of L; over L,=0Q)®le,—e], L, =02)20(L1),

straight line % (Riemann invariant) on a simple wave creates _

- . L, =0(2)® {e, — e} .
a new simple wave of the same type (“gauge group’” means
that the parameters of L, depend on R ). In Sec. V we solved The case with L;. = O(2) ® O(2) is very interesting because
Eq. (2.4) using arbitrary functions (R ). Weshift thefreedom  we have simple elements corresponding to that group with
from the a’s to new, more convenient functions. We should ~ only one arbitrary parameter. Two parameters of O(2) ® O(2)

do this for functions a and /3 independently. For @ and 8 become one parameter of the “diagonal group O(2).”
one gets algebraic (or transcendental) equations. These equa- Now let us write down the explicit form of the action of
tions will express @ (or 3 )in terms of new functions and their the gauge group on functions H and G for the case (5.1). Let
first derivatives with respect to R. The condition of solvabil- ~ us suppose that there exists one exact solution—a simple
ity of the algebraic (or transcendental) equations provides us wave with parameters & and p and corresponding arbitrary
with restrictions for thenew functions. Varyinga(R Jto B (R ) functions H and G. In this case we have L, = O(2) ® O(1,1)
we change these new functions and their first derivatives. =L, ais a parameter of O(2) and p of O(1,1).
Thus we get the gauge transformation connecting two exact We change functions pandainto p + dpand @ + Aa.
solutions (simple waves of the same type). This transforma- It is a change of gauge by means of functions 4p and 4a.
tion is very similar to classical Bicklund transformation.® And we look at how G and H will change. In this way we
For Eq. (3.1) we have the following situation: obtain the explicit action of the gauge group on the manifold
L=02)20(1,2). (6.14)  of functions H and G and their first derivatives with respect
And we used the following chains of subgroups of O(1,2): toR.
M We have
H H,
O(12)20(L1)2 e, — e} , coshp = eH aH , cosh(p + Ap) = ¢ - dH,
0(1,2)20(2)D (e, — e} , (6.15) cle”) dR cle™) dg 7
2 17)
O(1,2)20(1,1)Dfe, — e} . but
All these chains correspond to examined simple elements cosh( p + 4p) = cosh p cosh Ap + sinh psinh 4p .  (6.18)

I

Inserting (6.17) and (5.39) into (6.18) we get
e’ dH, e dH e (dH\? 2
= ——cosh(dp) + & (———— (— — 1) sinh(4p). (6.19)
cle) dR  cle”) dR nd : c2e*) \dR ()
(6.19) is the nonlinear representation of the gauge group originating from O(1,1) on the manifold of functions H and G and

their first derivatives with respect to R (H,H,G,G,,a, p,Aa,4p are functions of R ).
For O(2) we get similarly from (6.20)

sin(a + 4a) = sin @ cos Aa + sin da cos a , (6.20)
e e (5 (4] )" (e 5 ()]
ot ¢ -0 (4] ) - (8 - oo
s 1~ (o= (25 () ) + (Yier-omier-n ]

[l (-] )
oo var o () ) (- ren-er

+ & (FdE(H ~G ))2] 1/2] [6—14 o (%)4(e2” ) cz)] ) l)m . (6.21)
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Restrictions on functions H, H,, G, G, and a range of the parameter R given in Sec. V have been already imposed (see Sec. V).

Relations {6.19), (6.21) are analogs of the Bicklund transformation for Eq. (5.1). At the same time this action is a certain
representation of the gauge group (a local one) on the manifold of arbitrary functions and their first derivatives parametrizing
the solution. In this way the “Bécklund” transformation for Eq. (5.1) is a nonlinear representation of the gauge group (a local
one) which has originated from the group L,.
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APPENDIX A
Covectors 4, (F,,F,), K =0

2 21/2
bg - ) [—(% sina + P13 cosa) + (¢72 cosa — P1¥s sma) s1nhp] + =L P1 cosh p
2

X X X1
N (X] _ 2)1/2 1 1
A = =F7=/— [(:p1 sina — £2%3 co5 a) - ((pl cosa + F2#5 g a) sinhp] + -Cf—zcoshp ,
k=0 X2 X1 X1 X1

2 — 1/2
’w__)_(cosa+smasmhp) + coshP
X1 i

#(v? _c2 1/2
_(/1/1—) (¢2 cosa — Msin a) _+_ %
X2 X1 X1

L, CoOsa + &%—sina) + )

o | - —cZ)‘“(
BE— 4
X1 X1

K=0 X2

Z(y? — )2
-—-———(Xl ) Xzsina—i-cil
X1 X1

Covectors A, K =1

(XZ 2)1/2 )
—X*[—(%sma + Mcosa) + (—¢2cosa + Msina)sinhp] + %coshp
2

X1 X1 X1
(1 (Xz — )2 .
(le_ 0o I’ [(‘Pl sina — /{/;%cos a) + (:p, cosa + 2 gin a) smhp] + & cosh p ,
= 2 1 X X1
Yalx 7 — )"’ l
———————(cosa —sina sinh p) + %coshp
X1 X1
2 212
g(’h—c)(_¢)2008a + Msina> + %
X2 X1 X1
2) Ly — cYl/?
/{ et M(wlcosa+%sina>+%
K=1 X2 X1 X1
— E(2 — )2
——-—(XI ) Y.sina + )
Xi X1
APPENDIX B

Covectors A, K =0, (F,.,F,.)

2 _ 22
(—X—l—)—(cpz cosg — L% sinb’) + &

9 ¢) X1 X1
(r) _(X%— 2)1/2 Pop
A = ————(¢1cosﬁ + £2r3 sinﬁ) + £z
K =0) cy? 1 Y
2 2172
-——(Xl <) sinf8 + P
X1 X1
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Covectors A, K =1

(XZ _ 2)1/2
r (—‘Pz cosw — £1fs sma)) + £
2
() (y? — )72 a8 ot
A= ————(¢71 cosw — F283 sinw) + &2
9 &) X1 X1
2 _ 2
g.l__)_sinw + ﬁ_
X1 X1
APPENDIX C

Covectors A ”, (Fy- ,F,-)

i
Z [ _ 9P (cos a sinh p + sin @) — @,(sinh p sin a + cos a)] Py cosh p
2 Xl X
(1”) (XZ _C2)1/2 !
A = l [— £2fs (sinhp cosa + sina) + @(sinhp sin @ — cos a)] + 2] coshp [,
k=0 X2 X1 %
(¥i—e)
———— ¥, (sinhp cosa + sina) + & coshp
X1 X1
(X% _C2)1/2 .
[_ #195 (sinh p cos @ — sin @) — @,(sinh p sin & — cos a)] + 1 coshp
X2 /Yl X
(17) (XZ _c2)1/2 1
A = 1 P2P3 { — sinh p cos a + sin @) + @,(cos a + sinh p sin a)] + %coshp ,
K=1 X2 Xl Xl
2 _ 12
_(,}’_1____)____)(2 (sinhp cosa —sina) — %coshp
X X
— g(XZ __CZ)I/z ] !
—1————-———(% sina + 213 cos a) + &
9 ¢ X Y1
(2%) g(Xz _c2)1/2 1
A= —‘__(¢,sina _ mccsa) + 2 | ko1,
9 4] X1 X1
P(yv: — A2
P =) e+ B
X1 X1

where , p, B, are arbitrary functionsof @, i = 1,2,3and y} = ¢} + @3 + @3, ¥ =@ + 93, & =
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*-algebras: A particular class of unbounded operator algebras
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We consider a weak unbounded commutant for a set of unbounded operators and we examine
op*-algebras which coincide with some of their bicommutant. This class of op*-algebras, called
V *.algebras, shows some properties close to those which hold true for bounded operator algebras.

PACS numbers: 02.30.Tb, 03.65.Db

I. INTRODUCTION

Algebras of unbounded operators have been the sub-
ject, in recent years, of many studies (Refs. 1-9), particularly
in view of their applications to quantum theories.

From some point of view, these algebras seemed to be
the best generalization of algebras of bounded operators in
Hilbert space. But a deeper study has shown that a large
number of pathologies arises and that many properties of
algebras of bounded operators may fail to be true for them.

For this reason it seems to be convenient to select,
among the most general unbounded operator algebras,
classes showing a better behavior. In this spirit, many inter-
esting works have been published {see, for instance, Refs. 10—
12).

The present paper may be considered as a further at-
tempt in this direction.

After having summarized, in Sec. I1, notations and ba-
sic definitions, in Sec. III we introduce a weak unbounded
commutant for a set of unbounded operators and discuss
some simple topological properties of it.

As is natural, a definition of a commutant leads us to
consider op*-algebras which coincide with some of their bi-
commutants. Thus we introduce, in Sec. 1V, V *-algebrasand
SV *-algebras and show that in these algebras it is possible to
overcome some difficulties which arise in the study of the
most general unbounded operator algebras. Actually, some
properties which hold true for bounded operator algebras
can be proved for V *-algebras.

InSec. V we show that the bounded part of a ¥ *-algebra
isa von Neumann algebra and that a V" *-algebra is not neces-
sarily an EW *-algebra (Refs. 10 and 11). In fact, in a V' *-
algebra a symmetric element need not be essentially self-
adjoint.

On the other hand we prove that an arbitrary von Neu-
mann algebra is allowed to be the bounded part of a nontri-
vial V *-algebra.

Finally, in Sec. VI, we briefly discuss some situations
where an algebra &/ generates a V" *-algebra and examine,
furthermore, the abelian case.

For what concerns applications, it has been proved else-
where (Ref. 13) that V' *-algebras provide a natural frame-
work when discussing the problem of the completeness of a
set of compatible observables, a problem whose classical for-
mulation is given in terms of von Neumann algebras.

As in the above case, we guess in the mathematical de-
scription of many physical theories (such as quantum field
theory, quantum statistical mechanics, etc.) that " *-algebras
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could appropriately be substituted for von Neumann alge-
bras, as far as the use of bounded operator algebras is not
something intrinsic in those theories but is only needed for
technical reasons. (With respect to this point see, e.g., Haag’s
discussion in Ref. 14.)

Il. NOTATION AND PRELIMINARY DEFINITIONS

Let & be a scalar product space. We will denote with
C,, the *-algebra of all linear operators in & which have an
adjoint in Z; or, equivalently, the *-algebra of all 0{ &, & )-
continuous operators. The o{%, &)-topology is understood
to be that defined by the set of seminorms

{¢ - l(¢’¢)|! Ye "@}

The algebra C, is often called . * (<) by other authors.

We will denote with 7 the Hilbert space which is the
norm-completion of &. Then C,, can be meant to be the set
of all closable operators 4 in 7 having & as a dense com-
mon invariant domain and such that 4 *& C &. The invo-
lutionin C,, isthendefinedby4 — A4 *with4d * =4 * | Z.

An op*-algebra ./ in & is an involutive subalgebra,
with unity, of C, .

An op*-algebra . on & is said to be (i) closed: if
D =9 (A)=n,..,D{A) or, equivalently, if &Z is com-
plete under the .7 -graph topology defined in & by the set of
seminorms @ — [|Ap ||, Ae.w; (i} self-adjoint: if
D =DHA)=n,.., D{4*); (iii) symmetric: if V4 e o
(1+A4%4) ‘e, = oA 0 B(F); (iv) standard: if each
symmetric element 4 of .« (i.e., 4 = 4 *) is essentially self-
adjoint in Z or, equivalently,if V4 € o/ 4+ = A * results.

lll. COMMUTANTS

In the following we will be concerned with the concept
of a commutant of a set of operators. We will give a definition
of acommutant in such a way that also unbounded operators
may belong to it.

Definition 3.1: Let 7 be a Hilbert space and & a dense
linear manifold of 7. With C (Z,7) we will indicate the set
of all closable operators A4 in & such that
Y CDA)nD(A¥).

ItisclearthatB (%) C C(¥,7/)andC,,, C C(Z,#).

It is easily seen that C(Z,%°) is a *-invariant linear
space. (A set 7 of operators is said to be *-invariant if 4 € &
implies4 *e€ 7.)

It is possible to define in C (& ,5°) many different topo-
logies. We will use the following ones.
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(i) & -weak topology is defined by the set of seminorms

4eC(D.X)— |dpd)lppe D.

(ii) & -strong topology is defined by the set of semin-
orms

AeC(D,X)— |Apllpc 2.

The map 4 — A4 *, which is continuous with respect to
the & -weak topology, is not, in general, & -strongly contin-
uous.

Let & be a *-invariant subset of C (&,5). The weak
bounded commutant #/, is understood to be the set

0., ={Be B\ (Af,B*g) = (Bf,A*g)
Vfge Y, YAel).

The set £, is a *-invariant linear space, but it is not, in
general, an algebra.
We define a weak unbounded commutant as the set

O, ={XeC(D ) (Af,X*g) = (X], 4*g)
Vfge D, VYAdel}.

It is clear that 7, = 7 n B ().

The second commutant is now defined as 7, = (),
and the commutants of higher order in a similar wayj; it is
easy to see that 7, = &, __, etc.

Both £/, and &, are *-invariant linear subspaces of
C(Z,7).

It is also possible to define a commutant in C,, for a
s-invariant subset of C (Z,7°). We will callit £ . and define
itas 7 =0, nCy,.

If Z is a *-invariant subset of C (Z,5), in analogy to
what is usually made for op*-algebras, we indicate with
D*(O) the subset of ¥ D¥)=0n,.0 D(A | D)*).
Clearly & C Z*(2).

We will now give some topological properties of the
commutant.

Proposition 3.2: Let & be a #-invariant subset of
C(2,%)such that % C Z. Then (i) 7/ is &-weakly
closed; (it) ., & C Z*O).

Proof: (i) is an easy consequence of the fact that for
Ae0,XeC(D,5) and f, g € &, the linear functional in

C(2,7)

w(X) = (Xf,4*g) — (4f.X *g)
is & -weakly continuous in C (2, (i) f A€ 0, Xe 7,
f,g€ Z we have

(Af,X *g)| = |(XfA *g)| = |(fiX *4 *g)|<k |If |
Ve D, (k=|X*4%g|).

Therefore, X*ge D (4 | Z)*).

Remark 3.3: Since &/ need not, in general, leave &
invariant 7 may fail to be & -weakly closed.

Corollary 3.4: Let o be an op*-algebra. We have (i) o7,
is D-weakly closed; (i) &, ={XeC(ZH)
XD C I¥A),XAf = A "*Xf,¥fec D, VA € o |;iii) if &
is self-adjoint, o/, = /¢ and &7, is & -weakly closed.

The proof is straightforward.

In contrast with the bounded case the bicommutant of
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an op*-algebra &/ may fail to be the closure of .. However,
we have

Proposition 3.5: Let &7 be an op*-algebra such that the
Z -strong closure &7 of o in C (2, ) is contained in &7 7.
If one of the following conditions is fulfilled, then .2/, coin-
cides with the & -strong closure of .7 in C (% ,%).

(i) .« consists only of bounded operators.

(i) #., =/, for some op*-algebra # C 7/,
=/ n B (F).

(iii) For each ¢ € & the norm-closure in & of the sub-
space .« @ is orthocomplemented in &.

Proof: (i) We need only to prove that &”, C 7°. Let

@€ Z, p#0. We consider the subspace o7 @ of #° (the clo-
sure will be meant in the norm-topology of 7). Let P be the
projection operator onto this subspace. Clearly, each 4 € .o/

leaves /@ invariant, and then P4 = AP results. Hence,
Pe o/, IfBe &/, and y € & we get

(1 = P)Bp,¥)) = (Bp,(1 — P)Y) = ((1 — P)p,B*¢) =0.
Hence, By = PBg, for the density of &, or, equivalently,
By € /@ . This is turn implies that B € o7°.

(i) Follows easily from (i).

(ii1) The argument is almost the same used in the proof
of (i). Notice that any 4 € &/ leaves &/ invariant because

/@ being orthocomplemented, coincides also with the
oD, D)-closure of @ and A is olZ,Z)-continuous.

Therefore, the projection Ponto ./ is an element of o7/, . If
we denote by P the continuous extension of P to 5, in the
same way as in (i), it can be proved that
By = PBp, ¥YB e o/, . This means that By is an element of
the closure of .27’ with respect to the norm-topology of 7.
Therefore, B € &/°.

Remark 3.6: In the proof of (i) we did not use the fact
that o leaves & invariant. Thus the statement remains true
for an arbitrary *-algebra with unity of bounded operators.

Remark 3.7: Under the stronger assumption
&/* C ", we get, as is obvious, the same statement for
o/" and moreover &7 = o/, results.

Notice that if we require that the & -weak closure o/
of o7 is contained in &/, we get also &/, = Y=o

Corollary 3.8: If </ is a closed and symmetric op*-alge-
bra, then &7, = &, = &° = Y.

Proof: Since a closed and symmetric op*-algebra is self-
adjoint (Ref. 11, Proposition 2.6), by Corollary 3.4, both
/" and /7, are & -weakly closed. Furthermore, for a
symmetric op*-algebra (&), = &, results (Ref. 12,
Lemma 2). The statement follows from (ii) of Proposition

3.5.
The assumptions (ii) and (iii) of Proposition 3.5 seem to

be independent; however, we have

Proposition 3.9: Let .« be a self-adjoint op*-algebra
such that &7/, = («,),,. Then for each ¢ € & the norm clo-
sure of the subspace ./ @ is orthocomplemented in &

Proof: Let o/ ¢ be the norm-closure in & of the sub-
space .« @ and let P be the corresponding projection opera-
tor. Since the bounded elements of & leave /@ invariant,
Pe (o), = o, Therefore, by Corollary 3.4, P leaves &
invariant.

”
oo
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The converse of this proposition is not, in general, true.
In fact, let T be a self-adjoint operator in % and 7~ the
algebra generated by the restriction of 7T to Z=(T)
=n,, D (T"). Asisknown .7 isself-adjointon & =(T'). Let
pe D=(T)and # =7 ¢. As will be shown later (Proposi-
tion 6.1) the norm-closure # of .# in & =(T') is orthocom-
plemented in & =(T). On the other hand, in this case,
T, #(T )., because I, = C1.

The assumption (&, );, = , has also the following
topological consequence:

Proposition 3.10: Let o/ be an op*-algebra such that
& C A If (), = o, then o, is D -strongly dense
in ..

Proof: Because of Proposition 3.5 (&), = .
Therefore, A, =, C A, C T Then
S ==

Remark 3.11: By a slight modification of Ref. 12,
Lemma 2, for a symmetric op*-algebra ./ the equality
(&), = & can be proved.

IV. BICOMMUTANTS AND /*-ALGEBRAS

We will now introduce the concept of V *-algebra.

Definition 4.1: Let </ be an op*-algebra on &. We say
that o is regular (respectively, completely regular) if
A 5o C Cyy (resp., &, C Cy)-

A regular (resp., completely regular) op*-algebra is said
tobea V *-algebra (resp., an SV*-algebra) if &/, = & (resp.
&, = A).

Finally, wesaythata V" *-algebra (resp.,an SV *-algebra)
is a V *-algebra (resp., an SV *-algebra) if it is & -weakly
closed.

Clearly, if .« is completely regular, it is regular and if it
is an SV *-algebra it is a V *-algebra.

Remark 42: If 9= [and therefore,
C(2,5%) = B ()] the concepts of ¥ *-algebra, V *-algebra,
SV *.algebra, and SV *-algebra coincide with the usual con-
cept of von Neumann algebra.

As a consequence of Corollary 3.4 we have

Proposition 4.3: If o7 is a self-adjoint op*-algebra, then
o is a V *-algebra.

Corollary 4.4: If o7 is a commutative self-adjoint op*-
algebra, then both &, and &/, are V *-algebras.

Remark 4.5: If, for a given op*-algebra o7, &/ isa V *-
algebra, then &/, is a von Neumann algebra.

We already noticed that if the bicommutant of a given
op*-algebra o7 is also an op*-algebra, then &7, is a V' *-
algebra. Besides, it is clear that &, is also minimal for this
property. If o7 7, is an op*-algebra, we say that it is the V" *-
algebra generated by .. On the other hand, the condition
&7, C C,, being not always fulfilled, it is not always possi-
ble to find a " *-algebra generated by a given op*-algebra .«

In order to find conditions for the regularity of an op*-
algebra we have to look for information about the range of
the operators of &/.. However, a difficulty arises from the
fact that in an op*-algebra the left multiplication may fail to
be continuous in the topology induced on ./ by the & -
strong topology of C (< ,57).
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Proposition 4.6: Let .o/ be an op*-algebra and o Cits D -
strong closure in C(Z,77). If the left multiplication is & -
strongly continuous in ./, then for each Ae "
AD C 2 () results.

Thus, if & is a closed op*-algebra and &7, C /°
(resp., ", C /) then & is regular (resp., completely re-
gular).

Proof: Let A € o7°. Then there exists a net (4,) C &/

such that 4, — A4, i.e, A,¢ > Ap Ype Z. If Be o, by

the hypothesis, BA,¢@ is a Cauchy net with respect to the
norm of &, or, equivalently, 4,¢ is a Cauchy net with re-
spect to the 27-topology of &. Then there is an element
Y€ D () such that A,p — ¢ in the ./-topology. Of
course, 1 = Ap. Therefore, Ap € D ().

Notice that if the algebra .o/ is dominated by a subalge-
bra of its center, the left multiplication is continuous.

Let us now give some properties of ¥ *-algebras.

In a previous paper,” we examined some spectral prop-
erties of the *-algebra C,,. We gave, in particular, a suffi-
cient condition in order that a self-adjoint operator of C,
admit a spectral decomposition with spectral measure with
values in the same algebra. This proposition was, afterwards,
proved by Antoine and Mathot (Ref. 8, Corollary 5.3) under
weaker assumptions. We examine now this problem for a
V *-algebra.

Proposition 4.7: Let &/ be an op*-algebra and let T'e &/
be an essentially self-adjoint operator in & and E (1) the
spectral family of 7. Then E (1) € &/7,.

Consequently, if & is completely regular then
EA)Z C &; moreover, if & is an SV *-algebra then
EA) | Ded.

Proof: 1t is known, by the classical spectral theorem,
that £ (1 ) commutes with all bounded operators commuting
with 7. Therefore, E (4 ) € {T }” (theusual bicommutant). But
since 2 is an invariant core for 7 we have (Ref. 8, Lemma
5.1) (T} =(T},. Thus (T} ={T}L
CiT}s, € 2L,

Now let T'be an essentially self-adjoint operator belong-
ing to an op*-algebra .. We will shortly discuss the behav-
1or of the functions of T, when they exist (an analogous study
was made in Ref. 15, from another point of view).

Proposition 4.8: Let o/ be an op*-algebraon & and T'an
essentially self-adjoint operator of 7.

Let u be a measurable function of a real variable, finite
and determined almost everywhere with respect to the spec-
tral family E{A ) of T. If

Eg{rpe?f:fj WA )P ER)pp) <o} (1)

then u(T)e 7.

Consequently, if .27 is a completely regular op*-algebra,
then u(T)Z C 2.

Furthermore, if & is
uT)=uT)} D e.

Proof: As is known, 4T’} commutes, in the usual sense,
with each element of {T'}'. As we saw before {7}’ = {T'},
and therefore, u(T' ) € (T Vo, € A0,

Remark 4.9: If u(A ) is a bounded function, then (1) is

an SV *-algebra then
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automatically fulfilled, thus all bounded functions of 7" be-
long to &7,

Remark 4.10: Proposition 4.8 extends immediately to
functions of a family {4,... 4, } of strongly commuting self-
adjoint operators (i.¢., with commuting spectral projections).

As a simple application of the previous propositions, let
us now say a few words about one-parameter groups of uni-
tary operators which play, as is known, an important role for
applications to quantum theories.

Proposition 4.11: Let o be an SV *-algebra on & and
U(t) a one-parameter continuous group of unitary operators
in 7. Let 4 be the infinitesimal generator of the group U(z).
If 4} Y e and is essentially self-adjoint in &, then
Ut)| P ed.

The converse of the above proposition is not in general
true because we do not know if & is contained in the domain
of the infinitesimal generator. However, we can give the fol-
lowing:

Proposition4.12: Let o bea V *-algebraon & and U (¢ ) a
one-parameter continuous group of unitary operators such
that U(t) | & € & and whose infinitesimal generator 4 con-
tains & in its domain. Then 4 | & € &

Proof If & C D{A)then 4 € C(Z , 7). Because

Af = lim %(U(h |~ 1)f VfeDW),
h—0 [

A belongs to the & -strong closure of 7 in C (& ,77). But &
is, by hypothesis, & -strongly closed. Therefore, 4 € o7 .

V. THE BOUNDED PART OF A *-ALGEBRA

In this section we will shortly discuss the structure of
the bounded part of a ¥ *-algebra and compare V *-algebras
with EW *-algebras, introduced by Dixon and extensively
studied by Inoue {Refs. 10 and 11).

Proposition 5.1: Let & be a V *-algebra. Its bounded
part is a von Neumann algebra.

Proof: Since &7 is & -weakly closed in C(<,77), o, is
Y -weakly closed in B (57) and therefore, it is closed in the
usual weak topology of B (#°).

Proposition 5.1 does not imply, in general, that a V" *-
algebra is an EW *-algebra (i.e., a symmetric op*-algebra
whose bounded part is a von Neumann algebra) for a V' *-
algebra need not be symmetric, as the following example
shows.

Example: Itisshown in Ref. 5 (Theorem 7.1) that, for an
abelian op*-algebra &, standardness is equivalent to com-
mutativity of .27, and it is also shown that there exists a
self-adjoint abelian op*-algebra with trivial commutant,
o/ = C1 (Ref. 5, Example 3). This op*-algebra is therefore,
nonstandard. But since it is self-adjoint and abelian, it is
regular (Corollary 4.4), and thus &/ is a V" *-algebra. Were
A" an EW *-algebra, then it would be standard (Ref. 11,
Theorem 2.3) and so & would also be standard.

Proposition 5.2: Let & be a self-adjoint SV *-algebra.
Then .« is an EW *-algebra.

Proof: By the hypotheses, &/ = &7/, = &, = /],.
By Ref. 12, Lemma 1, Vdew?, And),

= ("), = ("), Therefore, A*An(w",),, and thus

oo

(1+A*A)"!' } & e(&Z,),. Hence, o is an EW *-algebra.

2636 J. Math. Phys., Vol. 25, No. 9, September 1984

Proposition 5.3: Let o be a closed EW *-algebra and
assume, moreover that .o/ is & -strongly closed in C (% ,%°).
Then & is a closed SV *-algebra.

Proof: It is an easy consequence of Corollary 3.8.

Remark 5.4: As a consequence of the previous proposi-
tions a closed and symmetric op*-algebra which is &-
strongly closed is an EW *-algebra.

An interesting question arises now: What kind of von
Neumann algebra may occur as the bounded part of a V' *-
algebra? We will answer by showing that any von Neumann
algebra is the bounded part of a certain V *-algebra.

Actually, we have

Proposition 5.5: Let /" be a von Neumann algebra.
Then there exists a pre-Hilbert space & and a V' *-algebra 7~
on & such that 77, = 4",

Proof If NV =H(#), then Y =25 and
A7 = B(¥). If 4 =C1, for an arbitrary &, we have
A7 = C(Z,5°) and thus 47 = Cl;s0 7 = Cl.

Apart from the trivial cases, if .#” is a von Neumann
algebra it is possible to find a self-adjoint unbounded opera-
tor T affiliated with .#”. Let 7 be the algebra generated by
Ton £>(T). Weget /" C.5 =5".Then 4/ C 7.
This is turn implies 47, C &, C C,,.

Let 7" = .47 . 7" is a V *-algebra. It remains only to
prove that 77, = 4.

Since 4" C .7, and A7 =47 C A7 we get
AN SN, = A" = A4 Therefore, /= A", =77,

Remark 5.6: The V *-algebra obtained in this way is, of
course not unique.

Vi. SOME SPECIAL SITUATIONS

Let us now discuss some situation where an algebra &
generates a F *-algebra. In particular, we will consider the
case of countably dominated op*-algebras and the abelian
case. We will produce an example.

Proposition 6.1: Let o/ be an op*-algebra on & and
assume that there exists an essentially self-adjoint operator
T € o/ such that Z=(T)= 4. Then (i) & is self-adjoint
and, therefore, &7, isa V *-algebra; (ii) if there exists z € p(T')
such that (T —z) '€ o then &7, = o7, =& ="
(iii} if 7'is an element of the center of .« then .« is completely
regular; (iv) in the hypothesis of (iii), both ./, and &/, are
symmetric SV *-algebras and consequently &7 = & 7,.

Proof: (i) follows from the fact that, by the closed graph
theorem, .« is dominated by the self-adjoint subalgebra 7~
generated by T.

(i1) We will prove that the norm-closure of the subspaces
& fis orthocomplemented in & for each fe &. The state-
ment will follow from Proposition 3.5 and 3.8.

Without loss of generality we can assume z = 0. The
operator T ~" leaves « f invariant; in fact let
Y=1lim, . _A,f (Hilbert norm), then T "¢

=lim,_ T "d,fe o f. Let P be the projection onto
o f,then PT ~"=T "P.Let oy &, p=T ~"h for
some h € & . Then we get
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(T, PY)

= (b, PY) = (Phy)) = (Ph,T ~"T"Y) = (T ~"h, PT"Y)

= (g, PT™)) = (Pp,T"Y).
Therefore Pe 7, C Cy.

(iii} This can be carried out as a consequence of Proposi-
tion 4.6 (taking into account that .7~ dominates .«/ and thus
the left multiplication is continuous) or by a simple direct
calculation.

(iv) By the same argument used in the proof of Proposi-
tion 5.2, &7 = &/, is a symmetric op*-algebra. Then
(2, ), =« and therefore <, = (<, ,).,. The state-
ment for .27, follows from the symmetry of .&/,,.

Example: Let & be the Schwartz space . (R?) and con-
sider the operators

3
H=3% pi+4,

i=1

Li=¢;ps—q:02 Ly=¢:P— 4,103

Li=¢q,p,— 4
with

.9
g f=x,fand p, f=i—Ff
dx;

As is known [H, L;] =0. Thus H is in the center of the
algebra ./ generated by {H, L,, L,, L,}. Moreover, H is es-
sentially self-adjoint in #(R%) and #(R*) = & *(H ) (Ref. 5,
Sec. 5, Example 2). Therefore, the algebra /' generates an
SV *-algebra.

Remark 6.2: Proposition 6.1 applies immediately to the
op*-algebra 7~ generated by a self-adjoint operator T in
& =(T). In this case some further information can be ob-
tained by the following proposition.

Proposition 6.3: Let T be a self-adjoint operator in #°
and 7 the op*-algebra generated by its restriction to
& =(T). We have (i) if u(T) is a function of T, defined in the
usual way by the functional calculus, and
Du(T)) 2 Z=(T) then u(T') | Z=(T)e T, and thus it
leaves & *(T') invariant; (ii) if #° is separable, .7 ", consists
only of functions of 7.

Proof: We need only to prove (ii). We saw before that if
Ae T, then A9 ", = [E(L)}". Hence, A4 bicommutes
in the usual sense with 7. From the classical theorem (see, for
instance, Ref. 16, n. 129), under the assumption of separable
#, we get the statement.
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Proposition 6.4: Let </ be a closed abelian standard op*-
algebraon &.

(i) o is self-adjoint and therefore both &7/, and &/, are
V *-algebras.

(ii) Both &, and /7, are symmetric and, therefore,
standard.

(i) &7, = &7,

(iv) Both &7, and &/, are SV *-algebras.

Proof: (ii) Since & is standard, &, C &), C C,
{Ref. 5, Theorem 7.1}. By the same argument used in the
proof of Proposition 5.2 we get the statement.

(i1i) follows from the fact that &/, is symmetric.

(iv) is analogous to (iv) of Proposition 6.1.
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On the center-of-mass motion of geometrically confined classical particles
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By means of group-theoretical methods based on O(3,2) a description of center-of-mass motion is
given of a set of harmonically oscillating classical particles which can attain relativistic velocities.
The limitation |v| < c on the velocity leads to a limitation |r| <R on the amplitude, where R is
related to the universal oscillator frequency @ by R = c ™. It turns out that the center-of-mass
carries out a harmonic oscillation with the same frequency @ and the same limitations, and that
conditions can be formulated for the set of particles to be in its “rest system.” The method can be
applied to hadrons considered as bags containing harmonically oscillating classical quarks.

PACS numbers: 03.20. + 1,02.20. 4 b,03.30 + p,12.35.Kw

|. INTRODUCTION

Recently it has become clear from analyses of the ha-
dron spectrum that the relativistic harmonic oscillator as it
is defined by the anti-De Sitter group O(3,2) may play a role
in its description.!? The basic idea is that a hadron can be
visualized, in zeroth-order approximation, as a spherical bag
in which noninteracting quarks carry out harmonic oscilla-
tions of a universal frequency w equal to ¢ times the inverse
radius of the bag. A Hamiltonian dynamics for classical par-
ticles can be formulated which not only leads to the ordinary
equations of motion

F= — o, (1.1)
but has all limitations built in, namely

[r] <R (confinement), (1.2)

and

|k| <c (relativistic requirement). (1.3)

(We shall henceforth take ¢ = 1.) The dynamics can be seen
as a consequence of the O(3,2) invariance of an effective met-
ric, with respect to which quarks describe timelike geodes-
ics.? This is the reason why the confinement is called geomet-
rical. Since there apparently is a preferred time-like linear
trajectory representing the uniform motion of the bag as a
whole (in this case the line r = 0), Poincaré invariance is
broken down to a mere O(3} ® T,, where O(3) represents
space rotations and reflections and T, time translations and
reflections with respect to the preferred trajectory.

Periodicity comes in if T}, is considered as a covering of
O(2). A connection with the anti-De Sitter group can be
made by constructing this in a way as to make the above O(3)
® O(2) a subgroup of 0(3,2).

The Lorentz-group O(3,1) as a subgroup of O(3,2) is a
stability subgroup, i.e., it leaves a particular space-time point
inside the bag invariant, but otherwise transforms a set of
confined harmonic oscillations into another set of confined
harmonic oscillations. The point transformations corre-
sponding to this O(3,1) are in general curvilinear in r and ¢
since they must also leave the sphere |r| = R invariant. Ordi-
nary Lorentz transformations, linear in r and ¢, are therefore
quite different. When the point of stability is (0, #,), then a
Lorentz boost belonging to the above O(3,1) corresponds to
an ordinary linear Lorentz boost only when r~0 and = 1,.
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What happens is, that when a boost is given to a particle at
rest in the origin, it starts out to oscillate harmonically.

Of practical importance is the question of how to define
a rest system for harmonically oscillating particles with pos-
sibly different rest masses. If a meson is considered as a bag
filled with a quark and an antiquark, then these particles
carry six momentum degrees of freedom. In reality there
should only be three, while the three remaining degrees of
freedom should be associated with the momentum of the
meson as a whole. The reduction to three internal degrees of
freedom can be achieved by demanding the two quarks to be
in their rest system, if such a system can be defined. For an
arbitrary system of interacting particles, like the MIT-bag,*
this is not satisfactorily possible. The harmonic oscillator
bag is a favorable exception. Associated with it is the possi-
bility of defining a ““center-of-mass.” In this article it will be
shown that a center-of-mass can be uniquely and meaning-
fully defined in two ways, one of them O(3,2) invariant, the
other not. Both definitions share a number of properties.

{a) Each center-of-mass (c.m.) depends on the individual
orbits, rest masses, and spins of the participating point parti-
cles.

(b) Each c.m. is independent of how one groups particles
together to form subunits and is also independent of the or-
der of sequence of the particles.

(¢) In the nonrelativistic limit of slow motions around
the center of the sphere both correspond to the nonrelativis-
tic definition of center-of-mass, in which case the individual
spins are unimportant.

There are three cases where both definitions lead to the
same result. One is the above mentioned nonrelativistic lim-
it, the second is that of a set of particles with a net internal
angular momentum equal to zero, and the third is that of no
center-of-mass motion at all. Since one definition of c.m. is
very similar to the nonrelativistic definition (particle masses
replaced by particle energies) but depends on the coordinate
system, I shall call this the “canonical center-of-mass”
(c.c.m.). It can simply be constructed from components of a
second-order antisymmetric tensor which plays a funda-
mental role in this article. It depends on the spin only impli-
citly via the energy.

The second definition of center-of-mass is independent
of the coordinate system, but depends explicitly on the indi-
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vidual spins. The functional relationships are intricate. I
shall call this the “system independent center-of-mass”
(s.i.c.m.). Both definitions have their advantages and disad-
vantages. It must be considered a lucky circumstance that
the definition of a coordinate system with respect to which a
system of particles is “at rest” is unique save for a space
rotation around the center of the sphere, and a time transla-
tion. Thus there is a unique criterion for a set of oscillating
classical “quarks” of different mass to be in its rest system.
This is also the case in the quantum version of the model.

Besides centers-of-mass, a rest mass and spin of a con-
glomerate of particles can be defined. Under the condition
that the magnitudes of the individual spins of the participat-
ing particles be smaller than, or equal to, ' times the indi-
vidual rest masses, the rest mass of the conglomerate is larg-
er than or equal to the sum of the individual rest masses.

Additional O(3,2) breaking quark interactions can be
required not to disturb the motion of the center-of-mass.
Space and time reflections will not be considered and a dis-
cussion of SO(3,2) rather than O(3,2) will be given.

The article is built up as follows: In Sec. II a review is
given of the relativistic harmonic oscillator and its relation
to SO(3,2). A bivector T'is introduced which characterizes an
oscillating particle or set of particles. Section III is devoted
to the parametrization of the restricted anti-De Sitter group
as preparation for the study of the properties of 7" (Sec. IV).
The physical interpretation of 7 and its connection with the
center-of-mass is given in Sec. V. Two examples are worked
out in Sec. VL.

Il. THE RELATIVISTIC HARMONIC OSCILLATOR

For r = |r| <R consider the following point transfor-
mation x“—x"*, with r = (x',x%,x”) and ¢ = x*:

Z¥N=J(x*) N=1,..5 u=1,.,4,
Z'N=A",Z™ (automatic summation), (2.1)
Z'N =T (x").
Here Z~ = .7 (x*) stands for the transformation
Zk=yx* (k=1,2,3),
Z* = yR sin(x*/R), (2.2)
Z5 = ¥R cos(x*/R ),
withy = R /VRZ— 7, whileA ™ » stands for a linear trans-
formation with the properties
detA™, =1,
and (2.3)
A NMA QPHNQ = HMP!
where
Hy, =diag(—1,—1,—1,+1,+1)

is a metric in 5-dimensional flat space. (An extra restriction
is needed to exclude “time inversions”; see Sec. I1L.)

The transformations A ¥, form the group SO(3,2) of
hyperbolic rotations in five-space. Thus, the transformations
x*—x'* are isomorphic with SO(3,2), or the anti-De Sitter
group. The Z* as obtained from (2.2) satisfy

ZyZM=2Z"Z"H,,, =R?, (2.4)
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i.e., they lie on a hyperboloid in Z space.

Asis shown in Ref. 3, confined harmonic oscillations of
frequency @ = R ~' in terms of x* transform into confined
harmonic oscillations of the same frequency in terms of x'*.
Moreover, any confined harmonic oscillation can be trans-
formed to rest. It has also been shown in Ref. 3, that when
the points x* belong to a particular oscillation, then the asso-
ciated points Z * not only satisfy (2.4), but also lie in a two-
plane through the origin of Z-space. This observation en-
ables one to represent the oscillatory motion by a bivector
TMN(= _ T™)in Z-space. Since the plane is equally well
represented by a7 ™" with a an arbitrary scalar, in order to
fix the magnitude of 7" it should harbor one other charac-
teristic of the motion. This turns out to be the rest mass of the
oscillating particle. By doing so 7" contains dynamical
information. At this point one can make use of the fact that
bivectors can be added. Let 7' (/i = 1,...,k ) be the bivectors
associated with k oscillating particles with rest masses m,.
Then

k
TMN _ Z M (2.5)
i=1

is a bivector representing certain characteristics of the col-
lective motion of the k particles. However, while the rank of
each of the Ty is 2, the rank of 7"V is a general 4, which
expresses the fact that the effective particle whose motion is
represented by 7 ™" not only has a well-defined path and rest
mass, but carries also intrinsic angular momentum. This
“well-defined path” is to be interpreted as center-of-mass
motion of either of the two types. The intrinsic angular mo-
mentum is the spin.

As a corollary to this, if the point particles themselves
carry spin (as is the case with quarks), then this dynamical
information must also be incorporated in the bivector T')/"
which now becomes of rank 4 instead of 2. Thus we see that
the center-of-mass motion is influenced by the spins of the
contributing point particles.

How do we obtain 7" for a scalar particle? First find
an SO(3,2) transformation which transforms the particle to
rest in the center of the sphere. Except for special cases to be
considered separately, this is always possible. Let this trans-
formation be represented in Z-space by the 5X 5 matrix A 3.
The particle at rest is represented by

T(A)'I{v:m(aMS(SN4_5M45NS) (m>0), (26)
where m is the rest mass of the particle and & is the Kron-
ecker symbol. Note that 775"V is invariant under those trans-
formations of SO(3,2) which are orthochronous and which
leave the particle at rest. [We shall call a proper orthochron-
ous O(3,2) transformation “restricted.” Only these transfor-
mations are continuously connected with the identity.] The
representing bivector for the oscillating particle now be-
comes

TYN = (A ~WMpa ~WN,The. (2.7)

As already remarked, expression (2.6) represents a spin-
less particle at rest. The world line of such a particle is pre-
sented by the four-vector

xt = (0,7), (2.8)
which corresponds, with (2.2), to

C. Dullemond 2639



ZY =R (8M*sin ot + 6™ cos wr). (2.9)
Thus we find

Zy dz¥
THN = ma)(Zg'd e _zy=—>o° ) (2.10)
dr dr
and, if
ZM= (AWM Z.F (2.11)
we have from (2.7)
N M
TMN = mw(ZM-dZ— - ZNd—Z-_). (2.12)
T dr

For small values of Z *(k = 1,2,3) we have Z “~x* and r =t
and we find

{ k
T"’zma)(x"d—x — x’di>,
dt dt

which is just  times the angular momentum with respect to
the origin. We also have

(2.13)

k4 4k k dx® .
T = — T*~mwx" cos wt — m?sm wt, (2.14)
and
ks Sk P dx*
T = — T = — mox"sin wt — m7cos wt. (2.15)
t
From this, x* can be retrieved:
x*~(1/mw)(T** cos wt — T*® sin wt ). (2.16)
Finally
TH = — T54=mw(24£—lsiz—i)~ —m.
dr dr
(2.17)

The transformations leaving the particle at rest form a sub-
group SO(3) @ SO(2).Clearly, the rank of 72" is 2 and this
rank is preserved under transformations.

A spinning particle at rest in the center of the sphere can
be represented by

TgIN — m(6M56N4 _ (5M46N5)
3
+o Y 55€8MENC (m > 0), (2.18)
a,bc=1

where 53 represents the spin of the particle and € is the
Levi-Civita symbol in three dimensions (€'** = + 1). In
Sec. IV it is proven that in order to obtain a consistent phys-
ical picture m must satisfy the inequality

m>wls,|. (2.19)

For s,#0 the rank of 72" as given by (2.18) is 4 and this rank
is preserved under transformation. The cases m > w|s,| and
m = w|s,| are quite distinct.

There is a special class of particles (whose confined or-
bits touch or are embedded in the sphere 7 = R ) which can-
not be transformed to rest. They possess a well-defined 7V
which cannot be transformed into the form (2.18). This cate-
gory must be treated separately.

In order to obtain insight in the requirements for consis-
tency it is necessary to recall certain properties of the group
SO(3,2) which is done in the next section.
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lll. PARAMETRIZATION OF THE RESTRICTED ANTI-DE
SITTER GROUPS

Let A be a real 5 X 5 matrix satisfying

AHAT=H, (3.1)
where
. -1, 0
H=diag(—1,—1,— 1, + 1, 1=H }
8( +1,+1) o LIl
(3.2)

with I, being the 7 X 7 unit matrix and 7'meaning transposi-
tion. The set of matrices A form the group O(3,2) or anti-De
Sitter group. Since

HAHAT =1, = HA THA, (3.3)

it follows that if A is an element of the group, also A 7 is an
element of the group.

It is always possible to find an orthogonal matrix R and
a symmetric positive definite matrix S, both real, for which

A =RS. (3.4)
From this we find that
ATA=5"2 (3.5)

is an element of the group.

Let S be an arbitrary symmetric and positive definite
element of O(3,2). Then it can be diagonalized by a real or-
thogonal matrix R:

S=RS,R7, (3.6)
where S, satisfies
SRTHR)S, = R "HR, (3.7)

and has positive definite diagonal elements.
Since R THR is nonsingular, R can be chosen such that

S, =diag(1 4,44 AT Y, (3.8)

withA,, 4, > 0. If now R is kept fixed, the parameters 4, and
A, can be varied arbitrarily to yield new matrices .S as ele-
ments of O(3,2). In particular

St = diag(LAfASA A5, (3.9)

with arbitrarily real u is of the form (3.8) and leads to S* as
element of O(3,2). From this we conclude the following.

(a) Any symmetric, positive definite element of O(3,2) is
continuously connected with the identity.

(b) Any such element can be written in the form

S=e", (3.10)
where A, is real and symmetric and satisfies

AH+ HA, =0. (3.11)

(c) From (3.5) one can solve for S as element of the
group.

From (3.4) we now solve for R as element of the group.
For R to satisfy

RHR"=H and RR" =1, {3.12)
it must have the general form
R= R, 0 , (3.13)
0 R,

where R, is an nXn orthogonal matrix. Both det R, and
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det R, are conserved under continuous change of A. If
det R, = det R, = 1, then R is continuously connected with
the identity and so is A. Then also R can be written as an
exponential form

R=¢", (3.14)
where A, is antisymmetric and real, and satisfies
A,H—-HA, =0. (3.15)

From (3.11) and (3.15) we find the general forms for 4, and
A,:

a

0 Ay
= . 3.16
=l Tl o1
A 0
Aa=] 0 Al Am= A% An= -4,
= (3.17)
where 4, stands for an arbitrary real m X n matrix. We

conclude that any O(3,2) matrix A which is continuously
connected with the identity can be written in the form

A=e"e (3.18)
We shall call the group of these matrices A the restricted
0(3,2) group. The special group SO(3,2) contains besides the
restricted group also those matrices A for which det R,
=detR,= — L

It is interesting to observe that the subset of matrices A
for which

A=e, (3.19)
with A4 a real matrix satisfying
AH + HAT =0, (3.20)

do nor form a group. As a counterexample we consider the
matrix®

-1 & 0 0 -6
-® -1 0 O 0
U= 0 0 1 0 o |I, @321
0 e 0 -1 -6
- 0 0 e -1

with © arbitrary real. This matrix satisfies (3.1) and is con-
tinuously connected with the identity. For @ #0it cannot be
written in the form (3.19) with A4 satisfying (3.20).

We shall call the elements of SO(3,2) “proper” and
those elements of O(3,2) for which det R, = + 1 “ortho-
chronous” in analogy with similar expressions used for ele-
ments of the Lorentz group O(3,1). The restricted group con-
tains those elements which are both proper and
orthochronous. In analogy with the Lorentz group we shall

call an element of the form ¢™ a “generalized boost” and an

element of the form ¢”* a “generalized rotation” which is in
fact an ordinary three-rotation combined with a time trans-
lation. One needs six parameters to specify a generalized
boost and four to specify a generalized rotation. When no
confusion can arise, a generalized rotation will just be called
a rotation and a generalized boost will be called a boost.

Note that the product of two boosts is in general not a
boost, but a boost combined with a rotation. This rotation is
the generalized Thomas precession.
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Consider a boost S and its transform S’ by a rotation R:

S'=RSR”. (3.22)
Then
A;=RAR", (3.23)
and
A3 =RA5R ZT (3.24)
One can always choose R, and R, such that
a 0
AL, =110 b||, ax>|b]. (3.25)
0 O

Then S’ is a special boost, comparable with a special Lorentz
transformation. Apparently there are two parameters to spe-
cify a special boost, which we indicate with S*P. Then

S =t (3.26)
where
0 4
ar=1\1 032 (3.27)
32

Then, with (3.25), we can find a closed expression for .S *":
cosh a 0 0 sinha 0
0 coshdb O 0 sinh b
S = 0 0 1 0 0 ,
sinh a 0 0
0 sinhb O 0

cosh a 0

cosh b
(3.28)

with a>|b |. Every restricted A satisfying (3.1} can now be
written as follows:

A =RS*R’,

where R and R ' are generalized rotations.

(3.29)

IV. PROPERTIES OF 7V

With the information obtained in Sec. III we can study
the properties of the “standard form” (2.18) of a bivector
under restricted O(3,2) transformations. First we observe
that the rotation R ' occurring in {3.29) rotates the vector s,
but does not change the form of the T5™. Also m is not
changed, so R ’ can be left out of our discussion.

Next we apply S°F as given by (3.28). We find, if

T =S®T,S*, (4.1)
that
73* = m cosh a cosh b — ws,, sinh a sinh b. (4.2)

We shall postulate that 7% represents the total energy of the
oscillating particle. Clearly, when s, =0, the energy of a
moving particle is larger than that of a particle at rest.

Let w|sy| < m. Then

T>*>m cosh a cosh b — w|s,|sinh a sinh|b |
= m cosh(a — [b]) + (m — w|s,|)sinh a sinh|b |.
(4.3)

This increases indefinitely with increasing a. When

w|Sy| = wsy3 = m we have
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T°* = m cosh{a — b). (4.4)

This is equal to m when @ — b = 0 and we see that a particle
at rest can have the same energy as a moving particle, when
an exceptional boost is carried out.

When w|sy| = wsy, > m we find

T>* = m cosh(a — |b|) — (w|s,| — m) sinh a sinh|b |.

(4.5)
If a = |b | one can always find a such that 7°* <0, and in-
deed, it can be made arbitrarily small. In that case there is no
lower limit on the energy and it follows that w|s,| > m can-
not represent a physical situation.

The transformation R as occurring in (3.29) does not
change 7 >* and can also be left out of consideration. Suppose
we add a number of 7|, together, each of which is obtained
from a T, for which w|s,,|<m, then for the sum
T =3, T, there exists a positive lower limit for the value
T** = %,T>*, when an arbitrary restricted transformation
is carried out. So, if a transformation exists which trans-
forms T into the standard form (2.18), then it follows that
w|sy|<m for this sum. The equal sign will be valid if an ex-
ceptional boost exists which does not change the value of
T>*. Such a boost may not cause any of the individual T’} to
grow indefinitely and it follows that every 7}, must satisfy
for its standard form the relation w|sy, | = m,,. This is not a

Let A be given by (3.29),

A =RS*R’,
and let us define A to be

A=R(SP 'R’ (4.12)
Moreover, let

T=ATA". (4.13)
Then

T =T +T) (4.14)
has the standard form

— o 0

=llo M [ . (4.15)

Clearly, since 7 is a sum of tensors for which |s,| < m we
now find

wlj| <p, (4.16)

and this is a property of T as given by {4.7).

We now prove that an arbitrary sum of tensors 7}, for
which w|sy | < m; can be transformed into standard form.
We may limit ourselves to a sum of two tensors, one of which
is in the standard form (2.18), the other being infinitesimal.
The general form of such a sum is

sufficient condition. In general, even if for all / this condition ot AV
is satisfied, we will have for the sum w|s,| < m. T= ( ( AVT M ' ‘, (4.17)
We shall first consider the case w{sy, | <m, for all i.
Let us transform a given standard form 7, by means of a with J and M given by (4.8) and (4.10) and
restricted transformation A into the general form T:
T=ATAT (4.6 44, 4p,
N o - ) AV =1|Aq, A4p, (4.18)
We write Adq; Ap,
wJ vV . )
T= vt ol (4.7)  Here we have also »|j| <. In analogy with {4.11) we define
where Aq = (AQDA%’A%),
0 Js —/, and (4.19)
J=\l-h 0 | (4.8) Ap = (4p,.4p,.4ps).
. . 0
/2 7 In order to transform T'into the standard form we apply
9 P an infinitesimal transformation
V=114 p2||> (4.9)
93 D3 I, 4 7 Ag”
and A=|j4af 1 0] (4.20)
0 —u g 0 1
M= L0 ‘ , u>0. @10 o
Furthermore we write Af = (Af,A5,413),
q = (91,92,93), and (4.21)
P =1{P1, P2 p3) (4.11) Ag = (4g,,48,,48;)-
i=UvJj2Js) Then
4
0 oA X +pudg”  wldgxj) +udf’
AT =ATA —T= || — 0l £Xj) — udg 0 0 : (4.22)
—wldgXj) +udf 0 0
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If now
Aq= — w4 fX])—pdg,
and (4.23)
Ap = —w(dgXj)+pdf,
then A transforms T into the standard form. By eliminating
A4 f we find
% -Ag) + W’ — &)Ag = — pdq + wjXdp. (4.24)
This equation must be solved for Ag. If we write Eq. (4.24) in
the form

54,4, = Ab,, (4.25)
J

then

A; = d¥j; + W — %P5, (4.26)
Since ©? > w?* we find det 4 #0 and the equations can be
solved. This proves the statement that if 7}, can be trans-
formed into the standard form T},, with @|sy; | <m,, for all
i,then T = 2T, can be transformed into the standard form
T, with w|s,| < m. Since Tj; >m,, and T’} = m, only when
T has the standard form, we find that

m>ymg, (4.27)
where the equal sign is valid only when all T}, can be put into
the standard form simultaneously.

When j is pointing in three-direction and 2 = @|j|, then
for T™" to be transformable into the standard form (2.18)
with m = w|s,| it should have the form

0 o 0 ¢ ¢

~wj 0 0 ¢ —¢
TN = 0 o o o0 o ||

-¢ -5 0 0 -—u

~¢ 46 0 p 0

¢ 482« j=il, p=wlil, (4.28)
This can be proven straightforwardly by demanding that no
transformation can be found which makes 7> negative.

Let us next turn to the massless case. Starting from a
given standard form (2.18) with w|s,| <m we apply a boost
and multiply the result with a positive number. Then the
limit of an infinitely large boost combined with an infinitely
small number is taken. The result is a finite tensor T which
can always be transformed by a finite restricted O(3,2) trans-
formation into either

“TSJN:(SNI(SMS +5N46M5 — SMIENS __ SMAgNS

or

Tg!N:(aMl +5M5)(5N2+5N4)_(5N1 +(SN5)( M2+5M4),
(4.30)

both forms being not transferable into each other, nor into
the standard form (2.18). There exist finite transformations
which result in the multiplication of 74" by any positive
number. An extention of the theorem on sums of tensors will
be given without proof.

(4.29)
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Let T, be either transformable into (2.18) for
m, >|Sy;, |, or into (4.29) or (4.30), then 3,7, is always
transformable into one of these three forms, and almost al-
ways into the form (2.18) with m > w|s,| [i.e., the forms (4.29)
and (4.30) occur exceptionally]. There is a clear analogy with
the effective mass of two photons, which is almost always
nonzero.

If m,, is put equal to zero for all 7|, which can be trans-
formed into (4.29) or {4.30), then the statement (4.27) is also
valid in this case.

Whether a given 7 can be transformed into one of the
standard forms (2.18), (4.29), or (4.30) is not immediately
clear. There are a number of necessary conditions to be satis-
fied. First of all, the quantity

T2=%TMNTMN=/J-2+Q)2j2—q2—pz, (431)
which is equal to m? + w”sy when T can be transformed into
the form (2.18), is an invariant. We then have

T%>0. (4.32)
When either (4.29) or (4.30) is the standard form we have
7° =0, (4.33)

so T'2>0 is one of the necessary conditions. A second, inde-
pendent invariant can be obtained from the five-vector S
defined as follows:

SN = (1/8a))TABTCD€ABCDN = ( - S9S41S5)3
with

(4.34)

S=pj+(@xp,, S*=-—p-j S°=q-j (435
and € pcpy being the five-dimensional Levi-Civita symbol
with €554 = 1. This invariant is

§2= —SySY =G+ qxp/wpf — [(a-if + (p-3F].
{4.36)
If T has the standard form (2.18) we have
52 = m?s3 >0,
while for the standard forms (4.29) and (4.30) we find
S?=0. (4.38)
Sharper inequalities can be obtained by considering two

tensors 7" and T, both of which being transformable
into the form (2.18) with w|s,| < m. Suppose we have

vV
M

withJ, ¥, and M defined by (4.8)—(4.10), and 73" having the
standard form (2.18). Then

(4.37)

wJ
YW= H _yr , (4.39)

Ty T, =T\ yw T3 =pum + @%j - 8o (4.40)
Because w|s,| < m and w|j| <z we now have
T,-T,>O0. (4.41)

Since 7-T), is an invariant, this is a general property valid
also when T, is chosen otherwise. Now, let T, be given by
{(4.39)and 7, by

0 v
riv= H—V'T MH

with either V' = (q'7,07)or ¥’ = (07,p’”). This tensor T, can

(4.42)

C. Dullemond 2643



be obtained by applying a boost of the form (3.28) with = 0
to expression (2.6) and then applying a rotation. From this
construction it follows that there are no restrictions on the
directions of q' and p’, and that it is always possible to find a
boost such that

p—e<|q| or p—e<|p] (4.43)
for any positive €. With (4.41) we now obtain

T —VV' T+ Te(= VTV + MY)>0. (4.44)
This leads to either

#>q-q or u>p-p. (4.45)

With (4.43), choosing ' =¢'q orp’ = p’f) we conclude that
[p| <p. (4.46)

A closer examination [by using the expression (4.29}] shows
that when 7 can be put in the standard form (2.18) we always
have

lq/<u  and

lgl<p and |p|<p. (4.47)
When (4.29) is the standard form, then |q| =y and |p| =
are exceptional, however, when the standard form is (4.30)
we always have

lg) = |p| = p. (4.48)

V.PHYSICAL INTERPRETATION OF TV

The antisymmetric tensor 7 ¥ contains ten pieces of
information which are to a large extent independent. A spin-
ning object contains the same amount of information about
its state of motion at any given time: position (three param-
eters), momentum (three parameters), energy (one param-
eter), and spin (three parameters). Let us now see which iden-
tifications can be made with regard to the components of
T ™~ First of all, let us find out which quantities are con-
served. For that we apply a “time translation” A of the form

L, 0
A= , 5.1
0 R, (5.1)
where R, is given by
R,=— c?s wt —sin wt' ‘ 5.2)
sinwt  cos wt
to T as given by {4.7):
wJ VRT
Tt)=ATAT = (5.3)
—R, VT M

Apparently M and «J are conserved. We have

(5.4)

>

w=l,

where 2 = T>* has already been identified with the total en-
ergy. The conservation of wJ is related to the conservation of
j defined by (4.8) and (4.11). We have
3
o == 3 €M (5.5)
202,

Because of the explicit form (5.5), together with the proper-
ties that j is conserved and additive, it is justified to identify
this quantity with the rozal angular momentum of the system
of oscillating particles.

From (4.35) we have
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_S _axp
H“ wfe
Here q and p are not conserved. Indeed, from (5.2) and (5.3)
we find

(5.6)

qlt) = q cos wt — p sin wt,

and (5.7)
plt) =qsinwt + pcos wt = — 1 dQU),
© dt

so that q and p carry out harmonic oscillations. The quantity

q(t)Xplz)=qXp (5-8)
is conserved. From {5.6) it then follows that S/u is con-
served. Apparently, j can be split up into two separately con-
served, but not additive quantities.

When 7" has the standard form (2.18) it is clear from
(4.35) that S, = Oif and only if the spin's, = 0. We may take
Sy = 0 as a criterion for spinlessness in general, also when
the standard forms are (4.29) or (4.30).

From {4.37) and (4.38) it follows that S can never be zero
without S, being zero, so the condition

S=0 (5.9)

can be taken as a criterion for spinlessness. Thus for a spin-
less system we find from (5.6)

i= —(@xp/owp. (5.10)
Since in that case the total angular momentum is equal to the
orbital angular momentum we can make the following iden-
tification, valid also when the spin is nonzero:

(5.11)

is the orbital angular momentum of a system of harmonical-
ly oscillating particles. If we now write

1= —(gXp)/ou

i=s+1, (5.12)
we find for the spin angular momentum

s=S/u. (5.13)
Note that s becomes equal to s, when 7" has the standard
form (2.18).

Let us now turn to the interpretation of q{¢) and p(¢).
Suppose we start from Z ' as given by (2.9) and apply a boost
(3.28). Then

ZM — SspMNZON
= R [(6M' sinh a + 8M* cosh a)sin w7
+ {67 sinh b 4+ 8™ cosh b Jcos wT]. (5.14)

With the help of the transformations (2.2) one would then
obtain
x* = R (6*" tanh a sin wt + 8" tanh b cos wt).  (5.15)

The T ™" tensor associated with Z * according to (2.12) has
the form
TMY = m[(8V'6M* — 556" %sinh a sinh b
+ (BN1EMS — 5M15Y%)sinh a cosh b
+ (6V*6™M? — §M45%?)cosh a sinh b

+ (V4™ — §M46V%)cosha cosh b ],  (5.16)

which gives
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g“ = T** = mé6*? cosh a sinh b,

p*=T**= — mé*'sinh a cosh b, (5.17)
T3* = p = m cosh a cosh b.

Apparently, from (5.15) and (5.17) we obtain
r¢) = (1/ou)(q cos wt — psinwt ) = q(t)/ou, (5.18)

which is the position as function of time of a single spinless
particle with finite restmass. For a set of oscillating particles
which is represented by some T*" we can now define its
“position” at time ¢ by

r.(t)=dq(t)/owu. (5.19)
This is oscillatory in nature but does not necessarily corre-

spond to the position of any individual particle in the set.
From the additivity of q(¢) it follows that

pr.(t)= 2“(:’) K, (). (5.20)
From (4.47), (4.48), and (5.19) it follows that
Ir.(f)|<R, (5.21)

the equal sign being exceptional.

The equation (5.20) shows that r_ () is analogous to the
nonrelativistic center-of-mass. The masses are replaced by
energies. According to Eq. (5.21) the center-of-mass is con-
fined to a sphere.

From (5.7) and (5.19) we find

dr,(t)

pit)= —p dt-

Apparently p(t ) is just the opposite of what one would like to
call the kinetic momentum of the set of particles, namely the
total energy times the velocity of the center-of-mass. There-
fore we shall define

(5.22)

dr.(t)
dt

as the total kinetic momentum. At any given time it is the
sum of the kinetic momenta of the individual oscillating par-
ticles wherever they happen to be. The orbital angular mo-
mentum I as given by (5.11) can now be reexpressed in the
form

Pft)= —plt)=p (5:23)

I=r, Xp,. (5.24)

A further remark is in order. What is called here the
kinetic momentum is not part of an energy-momentum four-
vector, nor is r.(¢) a system-independent orbit. It is, how-
ever, most easily expressed in terms of the tensor 7" which
displays the most important properties of a system of parti-
cles. For this reason I shall call this the “canonical center-of-
mass” (c.c.m.).

It is possible to define a system-independent orbit, but
this can only be done at the cost of the simple additivity rule
as given by (5.20). Suppose that the transformation A turns
T™¥ into the standard form (2.18) with w|so| <m. Then we
can apply the inverse transformation to the vector
(0,0,0,R sin w7,R cos wT) to produce Z ™. Finally, the in-
verse of (2.2) produces the system-independent orbit x*(r)
which is also confined. This I will call the “system-indepen-
dent center-of-mass” (s.i.c.m.)r_(t). We have
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r.(t)=r.(t), when s=0, (5.25)

and
if r(t)=0, (5.26)

For small oscillations, 2, = m, and 4 = m and (5.20) turns
into the nonrelativistic definition of center-of-mass. It is
easily verified that in that case r.(t) =r_(¢). The s.i.c.m. is
probably of limited value. It cannot be defined for systems
which have (4.29) or (4.30) as standard form, while for such
systems the c.c.m. is well defined and unique.

Let me finally comment on the fact that when
w|sy| = m, there exists an infinite number of special boosts
which, when applied to the standard form (2.18), do not
change the energy. In a quantized version of the model this
would mean infinite degeneracy of the ground state. In order
to avoid this, the case w|sy| = m must be considered not
physical. Whether the forms (4.29) and/or (4.30) may be
called physical or not is a delicate question since none of
these represent states of lowest energy. Most likely the form
(4.30) must be considered unphysical.

then also r_(t)=0.

VI. EXAMPLES

In order to illustrate the ideas outlined in the previous
sections we consider two cases.

(1) Ther,(t) and r.. (¢ ) of a system of two spinless parti-
cles, one of which being at rest and the other carrying out a
linear oscillating motion, is to be found. We have

r,(t)=0,

(6.1)

rt)=rysinwt, [ry =ry<R.

The rest masses are m, and m,. The form of T, is given by
(2.6):

TN (SMSEV4 — §M45M3), (6.2)

In order to construct 7, we must find the transforma-
tion putting r, to zero. With (2.2) we find Z V:

Z*=(Rrksinwt)/\[R* =7 sinwt,
Z*=(R’*sinwt)/\[R? =1 sinfwt, (6.3)
Z°’=(R*coswt)/\\R? =Rl sin’wt .

Let the boost A be defined by

ZM—AM Z'N, (6.4)
where
Z'N = R8"*sin wr + RS cos wr. (6.5)

Then the explicit form of A is

arglo+1, frg 0

AMy = Br, RB o], (6.6)
0 0 1
where
a=(R—\R*-1)/(RAfR*=R), (6.7)
and

B=1/RT-17. (6.8)

We apply (6.6) to
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T%N = m,(M5N — 6M45N5)’ (6.9)
and obtain
0 0 — myprl
™=l o 0 —R@m, (6.10)
myPr, Rfm, 0
The energy of particle 2 is
Ko =RBm, =Rm,/\[R* = 72.
Now we add T and T, together:
TMN — TMN 4 TMN
0 0 — mprl
=|| o 0 — m, — RBm,| |- (6.11)
mypPBr, m,+ RBm, 0
With (5.7) we find q(t) and p(¢):
q(t ) = m,Pr, sin wt, (6.12)
p(t) = — m,fr, cos wt. (6.13)

The energy 1 is equal to m, + RBm,. With (5.19) we find for
r.(t),

r.{t)=Rmyrgsinwt /(Rm, + m\yR* —r3).  (6.14)
while
P.(t)= —p(t) = (mory/\/R* — r2) cos wt. (6.15)

In order to find r.. (¢ ) we must transform (6.11) into the stan-
dard form. For that we apply the boost

arlr,+ I, —Bprl 0
AMy=11 —B'pr, RB' 0|/, (6.16)
0 0 1
with
a'=(R—JRT=pR)/AR —p3,  (617)
and
B’ =1/\JR*—p*r;, (6.18)
while p must be determined. This gives
0 0 —a
A'TA =[]0 0 —b 1|, (6.19)
a b 0
with
a* = [(@'r5 + 1)mB — (m, + RBmy)B 'p]rs,  (6.20)
and
b= —mBB'prs + (m, + RBm,)RB". (6.21)

For A'TA"' to be in the standard form we require a* = 0,
which equation must be solved for p. The result is

p =Rm,/(Rm, + m\JR*—F).

If this is inserted into (6.21} we find

b=m=[(m?+mi)+2Rmm,/J[R*—r2]"2
(6.23)

Next we determiner,. (¢). We apply A '~ ' to Z 'V as giv-
en by (6.5), where

(6.22)
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argro+1, Blpry 0
A" =Alp——p)=|| Bpr, RB O
0 0 1
(6.24)
Then we have
ZM =AM Z, (6.25)
so that
Z* = B'pRr§ sin wr,
Z*=RB sinor, (6.26)

Z3 =R cos wr.

We determine x* and x* with the help of the inverse of (2.2)
and eliminate 7. The result is identical with {6.14), so
r.(¢)=r_(t). From the form of (6.19) we see also that the total
spin is zero.

(2) Ther,(z) and r.. (¢ ) of a single spinning particle is to
be found.

We start from the standard form (2.18) with w|s,| <m
and apply the boost (3.28). We find

g, =0,

g, = m cosh a sinh b — wsg, sinh a cosh b, 6.27)
g, = ©Sy, sinh a,

and
P, = — msinh a cosh b + wsy, cosh a sinh b,
p.=0, (6.28)
D3y = — WSy, sinh b,

while [see (4.2)]
# = m cosh a cosh b — wsy, sinh a sinh b. (6.29)

From (5.7) we obtain
q,(t) = (m sinh @ cosh b — wsy; cosh a sinh b} sin w1,
g,(t) = {(m cosh a sinh b — ws,; sinh a cosh & Jcos wt,

q5(t ) = wsy, sinh a cos wt + ws,, sinh b sin wt. (6.30)

From (5.19), with the help of (6.29) and (6.30) we obtain

m sinh @ cosh b — wsy, cosh a sinh b

r. (t)=R - - sin wt,
' m cosh a cosh b — wsy; sinh g sinh b
s {t)=R m cosh a sinh b — wsy, 51f1h a c?sh b cos wt,
’ m cosh a cosh b — ws,, sinh g sinh b
. . . (6.31)
rolt) = Soz sinh a cos wt + s;; sinh b sin wt _
“ m cosh a cosh b — wsy, sinh a sinh b
This is the c.c.m. For the s.i.c.m. we find
rc,(t) = R tanh a sin w?,
r.(t) = R tanh b cos wt, (6.32)

r.(t)=0,

and is simply obtained from {6.31) by putting s, equal to zero.

VIl. CONCLUSIONS

To define a center-of-mass or even a center-of-mass sys-
tem for relativistic particles moving in an external field is a
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notoriously hard problem. As demonstrated in this article,
the relativistic harmonic oscillator is an exception. Because of
the high symmetry, quantities like energy, momentum, spin,
and orbital angular momentum can be satisfactorily defined,
although they do not transform in a conventional way. The
possibility to definea center-of-mass in a meaningful way may
be of use in the consideration of systems of quarks which are
permanently confinedinsidea “bag” with SO(3,2) symmetry.?
Here of course, quantized fields should be considered. On this
subject much work has been done already, but so far the re-
sults have been only of academic interest and the problems
have only been formulated mathematically.” Itis the purpose
of future research to apply this to the geometric quark-gluon
model of which the contents of this paper are only a classical
simplification.
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The homogeneous canonical formulation is applied to the Hamiltonian of the nonrelativistic
hydrogen atom. Its connection with the isotropic harmonic oscillator in a four-dimensional
Riemann space leads to the quantum analog of the Kepler problem.

PACS numbers: 03.20. +1i, 03.65. — w

I. INTRODUCTION

The study of the motion in a Coulomb field, as well as its
connection with the isotropic harmonic oscillator, has been a
subject of increasing interest over the past few years. For
conservative systems, it was classically shown that there ex-
ists a “local diffeomorphism” which maps a given Hamilton-
ian into another one with a new potential function': that is,
solutions for a given potential can be transformed into solu-
tions for another different one. These relationships have also
been investigated, in connection with the application of
quantum mechanics to the quarkonium, through the study
of the expression governing the “power law potentials.” In
fact, it was shown that the power n of the starting potential is
related to the power n’ of the potential to be obtained
through the constraint?

2[(n'/n)+1]+n=0

Simultaneously, using the Schrédinger representation
and the path integral formalism,? together with the Kus-
taanheimo-Stiefel transformation,* the equivalence between
the nonrelativistic hydrogen atom and a four-dimensional
isotropic harmonic oscillator was established.’ This method
is essentially based on the study of the system in a four-
dimensional symmetric space (isotropic and homogeneous
space), where it behaves as a free particle.®’ As is well
known, as the dimension of the space increases it becomes
important to take care of the hidden symmetry. In the parti-
cular case of the hydrogen atom the new quantity that is
conserved (Noether theorem) in addition to the angular mo-
mentum is the Runge-Lenz vector.

Section II of the present paper is devoted to a short
review of the homogeneous canonical formulation of classi-
cal mechanics following the lines of Dirac.® This formula-
tion will enable us tojustify in a natural way the method used
in previous works.*” In Sec. III the homogeneous canonical
formulation is applied to the nonrelativistic hydrogen atom
in order to show its equivalence to a four-dimensional iso-
tropic harmonic oscillator.

(—2<n< o) (1)

1. HOMOGENEOUS CANONICAL FORMULATION

In R? the Lagrangian of a conservative mechanical sys-
tem is

* MCIC CONICET Repiblica Argentina.
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L=p4,—H(p,q) (2)
where the ¢’s and the p’s are the dynamical variables of the
Hamiltonian theory. Since the variation of the quantity ( p,§;

— L) does not involve the variation of the velocities, the
Hamiltonian H is given by (m = 1)

H(p,q)=}p; + Vi), (3)
where ¥ (g) is the potential energy. If the time # is considered
as an independent variable we are led to the inhomogeneous
canonical formalism. Let us imagine a new independent pa-
rameter s. When a dynamical problem is solved, the func-
tions

pi=pils), t=1ts) (4)

q: = 4,ls),

are known, and the disymmetry in the set (4) is evident. The
formalism would be more elegant if one could count the time
t along the g,’s. This requires the introduction of a momen-
tum p, canonically conjugate to ¢. This can only be done if we
move from the inhomogeneous Hamiltonian A to a homo-
geneous Hamiltonian H ¥, Of course then

H
9H " _ 0. (5)
ds
In fact, through the integral transform of time scaling
t= J- als)ds (6)

one is naturally led to the homogeneous canonical formula-
tion of a mechanical system in a four-dimensional curved
space (three spatial coordinates and one temporal). In the
Minkowski space of special relativity, for instance, time is
one of the coordinates describing the world line of a particle.
But the use of a formalism based on a homogeneous treat-
ment is in no way restricted to special relativity, because it
must remain connected on one “time-coordinate’ only and
can, on this ground, only describe reasonably the behavior of
a one-particle system and not a system of several particles
each requiring a different proper time. Of course the use of
the homogeneous formalism is connected with one diffi-
culty, i.e., the definition and interpretation of the momen-
tum p, canonically conjugated to the coordinate ¢. For in the
inhomogeneous formalism, either the Lagrangian L (g, ¢, )
or the Hamiltonian H ( p, g, t ) are functions of ¢ but not of a
magnitude ¢’ or p,. Therefore no definition of the kind

aL d
p= (-4 )
ot ds
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can be agreed upon, unless the functions L or H are replaced
by more comprehensive functions L # and H*.

Let us therefore consider the more general Lagrangian
L ¥ from which the possible behavior of the system is de-
scribed either by a variational principle

5f [( ., f-H‘”)]du&fLHds:o, (8)
ds ds 5,

that is,

5J ( .@—Hd>ds_ (9)

or by corresponding canonical equations

qzlz [qi:H]~r Pi’z[pi’H]——' (10)
Here, the brackets [ , ] are to be defined by the help of deriva-
tions with regard to the ¢’s, p’s:

o). —5 (2222 _ 20.90) 0

The transformation (6) cannot change the fact that H is
constant, i.e., from Eq. (9) it can be seen that the canonical
momentum p, of the time coordinate is

oL
— _g=9L" 12
12 oY (12)
Thus, the Lagrangian L “ can be written as
L% =pg; +pt'. (13)

The new homogeneous Lagrangian L ¥ fulfills Euler’s
theorem, as it is a first-order homogeneous function in ¢’ and
t’. This theorem leads to an accessory condition. In fact, the
homogeneous Hamiltonian H # corresponding to L # is by
definition

HY"=pg;+pt' —L¥=0. (14)

It can be seen that the introduction of the new indepen-
dent variable s, through the constraint (6), transforms the
homogeneous Lagrangian L # into a singular Lagrangian. In
fact, differentiating Eq. (13) with respect to ¢, yields

gLH
3qar (13)
that is,
2r H
Det’ ;La —0, (16)
q; at’

which is precisely the condition for L # to be singular.

In the nomenclature of Dirac® Eq. (13)is a strong condi-
tion and Eq. (14) is a weak condition. The next step of the
formalism is to find the form of the homogeneous Hamilton-
ian H*". To this end we write the Hamilton equations as

H H
, OH _ oH , , OH _ oH (17a)
dp,  Op; dq;,  Jg;
, OHH —9HH
t' = , Pl= . 17b
dp, at (176)

Equations (17) can be regarded as differential equations
for H *. Their solution can easily be given if H ¥ is assumed
to depend upon the variables through the intermediary of
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§=H+p, (18)
Then

H"=F()=F(H+p,) (19)
Therefore, in order to satisfy Eq. (17) we must require that
. H
JH" _JF() _ . 20)
a9 9
Hence, applying condition (6}, i.e., ' = a(s), one gets
H
OH” _ als), 21)
az
that is
= (H + p,)als). (22)

ill. HYDROGEN ATOM

We now apply the homogeneous canonical formalism
described in Sec. II to the Coulomb problem. The Hamilton-
ian involving the Coulomb potential reads

H=4p>+p/r, 23)
where y is the strength of the potential. The homogeneous
Hamiltonian H ¥ [Eq. (22)] is

HY = (1 p* +pu/r + p,lals). (24)

The change of time scaling a(s) is chosen so as to regu-
larize the homogeneous Hamiltonian H * and the new auxil-

iary variable s plays the same role as that of the “proper”
time in the relativistic problem; the choice is

als) = rs). (25)
With this substitution, Eq. (24) becomes
HY =1’ +1p, + . (26)

Since we are interested in bound states, H (q;, p;) = E {con-
stant of the motion) and the homogeneous Hamiltonian can
be written as

HY=1p* —rE +p. (27)

It is easily shown that H “ in Eq. (27) satisfies the subsi-
diary condition (14). In fact, from Dirac’s theory we have

1P’ +p +p/r=0, (28)
since as stated, it is a weak condition.®

Let us now write the Hamiltonian (27) in R* and apply
the Kustaanheimo-Stiefel* mapping that realizes a point ca-
nonical transformation from the Euclidean space R onto a

three-dimensional curved Riemann space of the canonical
variables, that is, (g;, p,)—{u, p,) so that r = u*

4
= E Aglwu; (i=1,2,3), (29a)
j=1
4

dg,=2 z A, (u)du,, (29b)

i=1

1 4
D= 2— Z Agulp,), (i=1,23,4), (29¢)

where the matrix A4 (u) is given by
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Uy Uy Uy U,
—_ u2 - lll u4 u
Au)= ’ (30)
— U, Uy U3 — Uy
u, —u; u, —u

With this matrix _t_ransformation the homogeneous ca-
nonical Hamiltonian H ¥ becomes

HY=|p, —uE +4u, (31)
with the annihilation condition

dq,=2u,du, —usdu, + u, du; — u, du,)=0. (32)

Equation (29b) satisfies the consistency condition®

d —
gs =2 = (g, H"} =0, (33)
ds

where the bracket is given by

(g H?) =2py=2[uyp,) — us(p.)
+uypy)s—uypu)e] =0,  (34)

which is a weak equation.

The physical motion in R? can be studied through the
homogeneous Hamiltonian (31) as the motion of a particle in
a four-dimensional Riemann space subjected to the con-
straint (34). Finally, the accessory condition (14) is trans-
formed in the equation

H"=0, (35)

which is again a weak condition.
Introducing the relationships

~E=J0’, Eo= —p= —p, (36)
Eq. (35) can be written as

HY=|p, + 0’ +p, =0. (37)
This expresses a conservation law

H+p, =0, (38)
where

H=}p + W’ (39)

is the Hamiltonian of a four-dimensional isotropic harmonic
oscillator. This result is the quantum analog of the Kepler
problem whose connection with the isotropic harmonic os-
cillator was analyzed by Stiefel et al. (the new variable s
played the role of excentric anomaly) using the homogen-
eous canonical formulation,® but in a way unrelated to the
Dirac formulation.®

The homogeneous Hamiltonians H ¥ fulfill the Dirac
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condition {i.e., they lead to weak equations) and identifying
the p, and p, through the connections

., 0 .
(p.)y— —ih ———a (j=1,23,4), (40a)
u;
a
— —ih—, 40b
DPs > (40b)

one obtains the Schrédinger equation for a four-dimensional
harmonic oscillator; well-known results for the hydrogen
wave function can be recovered from it.” In this way, we have
shown the equivalence of the homogeneous formulation of
the three-dimensional hydrogen atom with the inhomogen-
eous formulation of a four-dimensional harmonic oscillator.

It should also be mentioned that the bilinear annihila-
tion condition (32) together with the integral transform of
time scaling (6) lead to the singularity of the homogeneous
Lagrangian L ¥(u', t', u, t ). These do not represent primary
constraints in the sense of Dirac. In fact, both conditions
commute with the Dirac Hamiltonian H P,

HP =HH¥ 4 A,(t' — 1)+ Ayusdu, — u, du,
+ Uy du;, — u, duy), (41)

i.e, A, =A, = 0. They also commute with each of the 15
generators of the corresponding Lie algebra SO(4, 2).'° Con-
sequently, both equations express the cyclic character of the
coordinates ¢, and ¢.
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The time-independent wave equation, d *¢/dz* + Q *(z)y = 0, where Q *(z) may have arbitrary
order zeros and poles on or close to the real axis, is transformed to a simpler wave equation of
similar properties (model). Approximate transformations leading from the original wave equation
to the model are simply related to Froman’s higher-order phase integrals, but are nevertheless

well defined at the pertinent zeros and poles of Q *(z).

PACS numbers: 03.40.Kf, 02.30.Mv, 02.30.Qy

I. INTRODUCTION

We consider the time-independent wave equation in
one dimension,

d 2¢ 2 — — 3 2 /l -2 1

—+ Q%W =0, z=x+1, Q" , (1)

22

where Q %(z) may have zeros and poles in some vicinity of the
real axis. These zeros will be called cutoffs (they are called
turning points in quantum mechanics); the poles will be re-
ferred to as resonances. We assume that Q *(z) contains a
small parameter A. It will only be used to define ordering,
and will never appear explicitly in the final results. Equation
(1) can be solved systematically in A 2 by using the higher-
order phase-integral approximations (PIA) introduced by
Froman.' They have certain advantages over the standard
higher-order JWKB approximations.” However, all these
approximations break down in the vicinity of zeros and sim-
ple poles of Q %(z), and in general they are also poor in the
vicinity of the second-order poles.® Presence of cutoffs and
resonances may thus require going to the modified PIA,*
or using the connection formulas for zeros of Q %(z),> 8 but all
these concepts have their limitations. A more general ap-
proach would be to transform Eq. (1) to a simpler wave equa-
tion with the same type of cutoffs and resonances,
5=
AV =0, i=%+5 0«12, ()
dz*

which can be solved analytically. Such an equation will be
called a model, or comparison equation; model quantities
will be distinguished from those referring to the original
wave equation by a tilde. Approximate transformation lead-
ing from Eq. (1) to Eq. (2) in lowest order in A 2 was found by
Miller and Good,’ and by Dingle.!® Here we generalize this
result to higher orders in 4 2 for arbitrary type of cutoffs and
resonances, both real and complex conjugate. Approximate
transformations from Eq. (1) to Eq. (2) are shown to be sim-
ply related to ordinary higher-order PIA but for both Eq. (1)
and Eq. (2). Therefore we call them double phase-integral
approximations (DPIA). In contrast to ordinary PIA they
are well defined at the cutoffs and resonances. Earlier at-
tempts to determine this type of higher-order corrections
required tedious calculations,'’~** and separate analysis for
the neighboring physical situations, such as, e.g., the trans-
mission through a potential barrier with the energy slightly
below or slightly above the top of the barrier. These results
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now follow immediately from our theory as special cases.
This paper deals with general properties of DPIA.
Typical applications are described in Ref. 14.

Il. THEORY OF DPIA

The simultaneous transformation of the independent
variable, z—Z, and the unknown function, ¥, leading
from Eq. (1) to Eq. {2), is generated by one function ¢(z)

[ = d2/dz, see, e.g., Egs. (3.1}3.5) in Ref. 7]:

2=fq(z) dz, (3a)
v=¢""y, (3b)
02— 2 2 1/2£ ~1/2

Q =gq (Q +e7 54 ) (3¢)

We assume that Q %(z) in Eq. (1) is analytic, except for isolated
singularities, and is also real on the x axis. In a given segment
(a,b) of the x axis (or close to it) Q *(z) is assumed to have a

certain number of zeros and/or poles z;, i = 1,2,...,M,, but
no essential singularities. Thus Q *(z) can be written

MX
QD) =fla) [] (z~—2z)™, (4)
=1
where m; is a positive or negative integer, and f'(z) has no
zeros or singularities in the vicinity of (a,b ); obviously f(x)
must have a constant sign in (a,0)

fix)>00r f(x)<0 fora<x<b. 5)

The function Q %3) in Eq. (2) is assumed to have the same
type of cutoffs and resonances as Q %(z), i.e.,

Mx

Q%2 =/2) ]'[l E—z)™, (6)
where £ (2) has the same general properties as £ (z) in Eq. (4),
and %, = 2(z = z;). Usually £(z) will be simpler than f|(z),
and the simplest choice is £ (2) = const. The actual problem,
however, is to simplify the differential equation. Thus we
assume that Eq. (2) is solvable analytically.

Equation (3c) is a nonlinear differential equation for the
function Z(z) if Q %(z) and Q %(3) are given. Assuming that
q(z)#0, «, asolution of Eq. (3c) can immediately be found in
lowest order in A ? by deleting the differential term,*!® which
yields
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p=2-L2E, (72

Cdz Q)
Integrating Eq. (7a) one finds
fQ(z)dz:fQ(Z) dz . (7b)

To check the assumption of g(z)#0, « atz =z, we
expand Q *(z) given by Eq. (4) in powers of (z — z;),

0 =cle—2)" |1+ 3 me-zt]. Gl
where
6=/e) I g~z (8b)

i=1

i)

and similarly for Q (z). Inserting these expansions into Eq.
(7a) we obtain, in the limit z—z;,

[9lz)]™ = /¢; 9)
which defines g(z;)#0, o, as required, if m; # — 2. For
m; = — 2 Eq. (9) gives a constraint upon the unknown pa-

rameters contained in Eq. (6), Z;, etc.

Finding the mapping z—Z in higher orders by a
straightforward iteration starting from Egs. (7a),(7b) can be
inconvenient (see Sec. I). One might think of the nonstan-
dard approach to solving Eq. (3c) (both in zeroth and higher
orders) proposed in Ref. 15, but applicability of these results
is too limited (Ref. 15 treats one turning point only, and
offers no straightforward generalizations). Our approach is
to relate the solution in question to the higher-order phase-
integral approximations' (PIA), but for both the original
wave equation (1) and the comparison equation (2). Using
PIA of order 2N + 1 (¥>>0) we find, for Eq. (1),

V)= [gav1@)] " exp] Hiwyy,1(2)] (10a)
v 112) = Q@)1 + Yyf2) + - + Yonl2)] » (10b)
Wy 1{2) = J- Gon+12)dz, (10c)

where the higher-order corrections Y ,,,(z) (<4 ") are
uniquely defined polynomials in the quantities €, , defined as

_d%
€, = e , p>0, (11a)
1 d* . _
eoza.;(Ql/ZBZ_zQ 1/2)
1 dQZ)z 2d2Q2]
- 5 _402% L 11b
16Q6[ (dz " =z (110)
¢=[owas, (110
[e.g., Y, =€y/2, Y, = — (€% + €,)/8, etc., see Ref. 16 for

Y, up to Yy}

The transformation z—w,y ., generated by ¢, ,
given by Eq. (10b), transforms Eq. (1) into the wave equation
in which the pertinent coefficient, K *(w, .. 1 ), is close to uni-
ty (see Ref. 3, Chap. 2B):

Koy, 1) =142y [+ ORY] =140 ).
(12)
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Including only terms up to 4" [to be consistent with Eq.
(10b)] we thus obtain K > = 1. Similarly we obtain K 2 = 1
after the transformation z—ib, , ;, generated by

Govir =01+ T+ -+ Y], (13)
where again for consistency only terms up to A > are includ-
ed (Y ,, «A?"). Thus at the considered level of accuracy the

wave equations after the transformations z—w,, | , and
Z—ib,y , , coincide, which implies

dw,y , _ Gon 4192
Qo 142

[This is a consequence of the equation analogous to Eq. (3c),
for the transformation w, , | —W,x . , .] With this approxi-
mation the generating function for the mapping z—Z thus
becomes

=1. (14)
dw,y

z 1+Y, +4+Y
gy =2 G QU Vot mt V]
dz Gy Q[1+Y2+"'+Y2N]
Integrating Eq. (15a) we find
[ @1tz = [ o 102 (15b)

The higher-order approximation to the function Z(z), defined
by Eq. (15b), will be called double phase-integral approxima-
tion of order 2NV + 1.

Note that our derivation requires | Y ,, |<€1 (and
|¥ 5, | <1), which is only true for |z — z; |»R,. , where z,, is
either a zero or a simple pole of Q%(z), and R, is a critical
radius which can be associated with any such critical point
2. (see Ref. 3). In favorable situations (i.e., A small enough)
R,. are small so that the critical circles, |z — z. | <R, do
not overlap. The DPIA should then be accurate, and im-
prove in higher orders, along any path in the complex plane
passing by the critical circles. This can lead to very accurate
results concerning the connection problems (e.g., transmis-
sion coefficients etc.), as illustrated in Ref. 14. At the same
time the accuracy of the DPIA in the immediate vicinity of
z,. (where |¥,, [>1, and |¥ ., |>1) requires separate treat-
ment. Thus the question of how good the DPIA could be for
relating #(z) to #(2) in the immediate vicinity of cutoffs and
resonances remains open. The only point we would like to
make is that Eq. (15a)is bounded in the limit z—z;, i.e., we do
not spoil the lowest-order behavior of g(#0, «; ¥,,— 0 at
zi,butY,,/ Y ,, —const#0, co). This can be seen from gen-
eral expressions for Y, (z) corresponding to Q *(z) given by
Eq. (8a) [see Egs. (57a), {57b) in Ref. 3], leading to

tl =%~z [1+ 5 ale—ar]

k=1

X [1— 5 [1+ 3 a,,k(z—zj)"]

g =

1 n_
X? my(m; + 4)(m, +2)*" 2

X(—16)""B,(2n — 1)z _zj)~|m,+z,n} ,
(16a)

where 3, is a slowly varing function of n, of order of magni-
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tude one. Equation (16a), being valid for m; # — 2, —4,
requires the replacements

(2n)!

———, form;= -2,
(mP2n — 147"

(16b)

ymy(m, + 4 — 8, =

[1+3a,lz—2z) ] —>—z"""' Y aulz—z),(16c)
k=0
for m; = — 4; a, and g, in Eqs. (16a) and (16c) depend on
g, in Eq. (8a), and vanish for g, =0.
Inserting Eqs. (16a)—{16c), and similar expressions for
Gan 41, into Eq. (15a) and taking the limit z—z;, we again
arrive at Eq. (9) derived in the lowest order for m; # — 2, and

at a constraint on Z,,..., form; = — 2, which now reads
N & 2 N 5 2
cj(l——z ")=E'j(1—z~—"n—), form;= —2.
n=1 Cjn n=1 Cj
(17)

The unknown parameters in Eq. (6), Z; etc. [which are
also contained in ¢; in Egs. (9) and (17)], should be deter-
mined from Eq. (15b). They will, in general, be different in
different orders. Note in this connection that we have a free-
dom in choice of the integration constant in Eq. (3a). There-
fore, for any given point z,, we can prescribe Z, = Z(z,). In
particular we can always make a convenient choice for one of
the points Z;. Also the unit length in the Z plane can be pre-
scribed, for example by fixing the multiplication constant in
7 (2). However, the sign of 7 (%) must be the same as that of
£ (x), in order that the signs of @ %(x) and Q (%) be the same. If
the signs of the square roots Q (x) and Q (%) are chosen in the
same way, positive sense of the x axis will be invariant under
the mapping, i.e.,

_ &
gh) ==>0. (18)

In lowest order (N = 0) the integrals in Eq. (15b) are conver-
gent at zeros and simple poles of Q ?(2), and some equations
for Z;, etc., can be obtained by integrating between these
points. In other situations, one should instead introduce ap-
propriate contour integrals. For a pair of odd order zeros
and/or poles of @ %(z), z;, and z;, we define

IMMNF%@MMﬁ,%M=M—L
(19)

(and similar expression for I, + inthe Z plane, § = g),
where the integration contour C encloses z; and z;, but no
other zero or pole of Q ?(z), and g is a normalization constant;
G2 + 1 12) is assumed to be single valued along C, i.e., a cut
connecting z; and 2, is implied. The J-integral (19) is inde-
pendent of C. In particular, integrating along the two lips of
the cut, z’ and z”, we obtain

Iy i) = 2gf Gan (2} dZ,

7

(19)

if the integral in Eq. (19) is finite. Therefore, g = }(org = 1/
2i) is often a convenient choice. Equation (19) remains mean-
ingful when z; and z, merge into an even-order zero or pole
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z;. In that case ¢,y , ; (z) becomes single valued around z;,
and we can write

Loy (D= Doy ialin))
= t2migRes gy, (z;), m;=2m.
(20)

From Eq. (15b) we obtain

F2N+1(j,l)=F2N+1(j,l), (21)
where the contours C and C should be circled in the same
direction, if condition (18] is fulfilled.

Our initial assumption that the zero or pole z; is
mapped into the same type of zero or pole Z; was crucial in
the derivation of Eq. (9), both in first and higher orders.
However, for simple models this requirement may be incon-
sistent with Eq. (21), if the order of z; is even. This simply
means that the mergence of z; and z; into an even-order zero
or pole z; (with Iy | = T +1) 1s not necessarily accom-
panied by the similar mergence in the Z plane. For example, if
0*(2) = const(z — 7,)™(m; = 2m+ — 2), one obtains
Res G5 1(Z;) = O, whereas in general Res ¢, . { (z;)7#0, in
contradiction to Eq. (21). For that reason, to be consistent
with Eq. (21), we now admit for the even-order zero or pole z;
being represented, if necessary, by a pair of the neighboring
odd-order zeros and/or poles, Z; and Z;. , such that
m, + m, = m; (and similarly for the inverse mapping z—z).
The usefulness of this extension, in spite of the fact that g(z)
may now be singular at z;, is demonstrated in Ref. 14.

In applications Q z) [or @ %(2)] is often a rational func-
tion

Qz(z)zcﬁ z—z)"=c"[1+0{" "],

i=1
M
m.=3m, 22
i=1
where ¢ = const, and m; = integer#0. In that case it can be

shown using the results of Ref. 3 (Secs. 3 and 4)that Y, (z) is
also a rational function, of the following form:

1 M .
Yy,(2) = - P o) ]] e—z)", (23a)
i=1
where
L, =2M—-Un, u,=—(m;,+2n, (23b)

and P, () is a polynomial of /, th degree, independent of c.
Equations (23b) assume all m; = — 4,and m_, #0, — 4; for
m; = —4 u;,, = 2n+ 1,and/, should be decreased by one;
1, should also be decreased if m , = 0 or — 4, in general by
one, or by two if Q (z) is even. [Functions Y ,, (z) are even if
Q?z)is even.”]

lIl. SUMMARY OF RESULTS AND CONCLUSIONS

The wave equation with cutoffs and resonances can be
transformed to a simpler equation with similar properties by
using the mapping z—Z defined by Eq. (15b). If the model
equation (2) is analytically solvable, all interesting quantities
such as reflection and absorption coefficients etc., can be
expressed in terms of parameters entering the model, Z; etc.,
see Eq. (6). This is illustrated in Ref. 14. One of the points Z,,
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and the multiplication constant in £() can always be pre-
scribed, and the remaining parameters should be determined
from Egs. (21). However, if their number, n,, is greater than
the number of equations (21), n., (n, — n,) parameters can
also be chosen for the best fit.

For a given model the rhs of Eq. (21) is a uniquely de-
fined function of the parameters Z; etc., which in simpler
cases can effectively be determined in arbitrary order. In
more complicated situations one can use a computer to per-
form necessary algebraic manipulations, and tabulate the re-
sults for N = 0,1,2,..., for subsequent applications. The inte-
grals on the lhs of Eq. (21), pertinent to the given wave
equation (1), are the same quantities which are dealt with in
ordinary higher-order phase-integral approximations.
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Transmission through cutoffs and resonances in the double phase-integral

approximation
Andrzej A. Skorupski
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Using the double phase-integral approximation technique developed earlier for the wave equation
d*/dz* + Q ¥z) ¢ = 0, we derive analytical formulas for the reflection (R }, transmission (T'), and
absorption (4 ) coefficients. They are valid to arbitrary order in the expansion parameter, for

functions Q %(z) having either two cutoffs or one cutoff and one resonance. For two examples of this
type the formulas for R, 7, and A4 are checked against numerical results, using approximations up

to fifth order.
PACS numbers: 03.40.Kf, 02.30.Mv, 02.30.Qy

I. INTRODUCTION

The time-independent wave equation in one dimension,

2
9V QN y=0, z=x+i, 1)
dz

can be reduced to simpler equations of the same form (mod-
els) by using the double phase-integral approximations'
(DPIA). In this paper we illustrate the general theory of
DPIA developed in Ref. 1 by considering three models solv-
able analytically:

(i) Parabolic model® {Sec. II),

(ii) Epstein’s model® (Sec. III),

{iii) Budden’s model* {Sec. IV).
Quantities referring to a model (such as ¥, z, etc.) will be
distinguished from those for other functions Q *(z) by a tilde
(just as in Ref. 1). Models (i) to (iii) have some common fea-
tures. Thus Q %(%) is real, and becomes positive when |%] is
large enough; ¥(Z) involves special functions, but one can
always identify solutions which asymptotically represent
propagating waves (for X — + oo ); the reflection and trans-
mission coefficients, R and T, can be determined analytical-
ly, and are simple elementary functions of the model param-
eters. Models (i) and (ii) conserve the wave energy (or the
current in the quantum mechanical language), i.e.,
R + T = 1, which is a consequence of Q (%) being both real
and regular. In Budden’s model Q %(%) has a simple pole at
X = p (resonance}, where part of the wave energy is absorbed
(R 4+ T < 1). In such cases one defines the absorption coeffi-
cient 4, so as to satisfy R + 7'+ A4 = 1. [A pole on the real
axis is obviously an idealization; it should be properly by-
passed in the complex plane when tracing #(x) between
X = + o;for Q *x) resembling that of Budden’s model, see,
e.g., Eq. (27), 4 > O corresponds to tracing in the lower half-
plane, if the time dependence is exp( — iw¢ ).] A basic concept
in the DPIA is the I-integral [see Eq. (19) in Ref. 1] which
can be associated with any pair of odd-order zeros and/or
poles of Q 2(z), located either on or close to the x axis (cutoffs
or resonances). In the simpler situations dealt with in this
paper, there is only one such pair, z, and z,. The correspond-
ing I'-integral can be written (with convenient normaliza-
tion)

Fovoi= =+ 3@3 Q@1+ Ysf2) + o + Yonlz)] dzs (2)
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where C is assumed to encircle z, and z, in a positive sense;
z, , are either real {z, < z,) or complex conjugate (Im z, > 0);
the sign of Q will always be chosen so that Q (x) > 0 for

x> Re z,. According to the general theory of the DPIA! we
make the model, Q %(Z), pertinent to other functions Q %(z)
[which should resemble O %(2) on the real axis, see Sec. V for
more details] by requiring I, +1 =1 5N - In view of this
basic relation we will use the same symbol I, , ; in connec-
tion with both the given function Q *(z) and the model. This
will make the formulas for R, etc., derived for the model,
automatically applicable (approximately) to Q *(z) provided
the model parameters in these formulas are expressed in
terms of I,y ;. Such formulas as following from models (i)
to (iii) are given in Secs. II to IV. They are then checked in
Sec. VI against numerical results in two situations for which
the I'-integrals can be calculated analytically. In Sec. V, we
formulate the applicability conditions for our formulas for
R, etc.

il. 7and 7 FROM THE PARABOLIC MODEL

The essential results of Ref. 2 can be summarized as
follows:

Q¥z)=¢F* —2), ¢>0 (cutoffs at + 3,), (3a)
#(Z) = parabolic cylinder (Weber’s) function, (3b)
T=[1+exp(mc'?2)] " (3¢)

To calculate I,y , , we first use Eqgs. (23a), (23b) of Ref. 1

(M =m_ = 2)to find the general form of ¥,,(2), and then
expand Y,,(Z) and Q () in a Laurent series convergent for

12> [2,]:

V.@)=¢ " P BN 7)Y

=2 S g, ik (4a)

k=0
z z
2—&'/2(2_—‘——‘—.-.). 4b
Q) = % (4b)
Inserting Eqgs. (4a), (4b) into Eq. (2) we obtain
Tover= 1§ 0@ di= — 2, (5
C
and we can finally write Eq. (3c)as (R=1—T)
T=[1+4exp(— Ty )] " (6)
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In view of the DPIA arguments given in Sec. I, Eq. (6) being
exact for the parabolic model, should be approximately valid
also for other functions Q ?(z) satisfying the applicability con-
ditions formulated in Sec. V. For N = 0, Eq. (6) reduces to
one of the well-known Kemble expressions for T [see, e.g.,
Eqgs. (9.2) and {9.3} in Ref. 5]. For N> 0, Eq. (6} is not new
either, but its direct derivation without referring to the para-
bolic model is more complicated.® First numerical check of
Eq. (6) in higher orders (N<5) was given by Karlsson,” who
used for this purpose the analytically solvable Epstein model
discussed in the following section.

{Il.RAND 7T FROM EPSTEIN’S MODEL
In Epstein’s model,® @ %(Z) can be written
Q2) = Pyfu) = au® + bu + ¢, (7a)
u=tanh(Z/L), L>0, (7b)
and 9{z) is express1ble in terms of the hypergeometrlc func-

tion. Thus Q %(%) has finite limitsat % = + o0, Q7 " » which we
assume positive, and is additionally characterized by Q2

=Q¥%=0)

a= %(Q2+ + QZ— ) — Q(z)»

b=4Q% —0%) c=05. (7c)
The constant L in Eq. (7b) defines the unit length in the Z
plane and can be fixed in a convenient way. Thus we put

L =1, which simplifies the algebra. With this choice one
obtains* (R =1—T)

T=(S, —S_)/(C+S.) (7d)
where
S, =sinb’[(7/2)Q, +0_)], (7e)

C = cosh’[7{a — 1)"?]. (79)

Equation (7f) is valid for any g, including a < } ora < 0. How-
ever, in our analysis we assume a > 0. In that case the two
roots of the quadratic P,(u) = 0, u, and u,, lie either on or
close to the segment — 1 < u < 1, which is the image of the X
axis [Pylu = + 1)= Q 2_ > 0]. The corresponding zeros of
Q?(2) located either on or close to the X axis (cutoffs) will be
denoted by 7, and 2,. [There are more zeros of Q %(3), which is
periodic with period iwL.] The I-integral associated with
Z, , can be written

Iy Q+ +0_ allz(l b
2m 2 8a
. v ﬁ"’_), (8)
12847 10244° av

where 8, is given by Eq. (A3} in Appendix A. This result can
be derived by using Eqgs. (8) and (9) of Ref. 7. It also follows
easily if one knows the general form of Y, (1), see Appendix
A. Inserting in Eq. (8) I, , , corresponding to a given Q *(2)
we obtain one equation for three model parameters. Two
constraints can thus be imposed for uniqueness. For exam-
ple, one can define

B =z — 2, dsz )
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and require

B, =B, i=12. (10)
This will guarantee dQ 2/dz at z, tobe equal todQ */dz at z,, if
L in Eq. (7b) is chosen so that 2, — 2, = z, — z,. [ B; defined
by Eq. (9) is the simplest dimensionless combination of
z,—z,and dQ*/dz at z,.]

For symmetric propagation [Q *( — z) = Q %z)]itis nat-
ural to impose the same symmetry upon the model. The con-
straints in that case might be (cutoffs at + z,)

B1 =B =z d0”

dz |2’ (H1a)
or

Bo=Bo= —17 QF, (11b)

where
By = [f(1u)1* 207 Juy], (12a)
Bo=L/m1? 107 —al, (12b)
02 =04 ,f=tanh~ "for 02<0,0rf=tan"'for Q2 >0,
a=Q?% — Qo,and lu,| = |1 — Q2 /a|'’2. Equation (11a)

is equivalent to Eq. (10), whereas (11b) implies Q2 = Q2,if L
in Eq. (7b) is chosen so that z2, = z,.

Thus to determine R and T from Epstein’s model the
model parameters Q , and a should first be found from Eq.
{8} plus constraints, to be used afterwards in Eqgs. {7d} to {7f).

IV.A, 7, AND A FROM BUDDEN'S MODEL

Summary of results of Ref. 4:

Q) =K%/z—p), K?>0, p>0, (13a)
#(2) is expressible in terms of the confluent hypergeometric

function, and the reflection, transmission, and absorption
coefficients are

Ro=(1-TpP, T,=T, A;=T(1-T), (13b)

R_=0 T_=7, A,=1-T, (13¢)
where

T = exp( — 7Kp), (13d)
and the subscript O refers to propagation towards the zero of
Q?3#)(i.e.,fromx = — o tox = o0 ), and the subscript o to
propagation towards the pole (from « to — o).

Using Eqgs. (23a), (23b) of Ref. 1 (M =2, m_, = 0) to

find a general form of Y, (), and expanding Y,, (z) and Q (%)
in a Laurent series convergent for |Z| > p we easily find, as in
the case of Eq. (5),

? BV = 7Kp. (14)
Using this result in Eq. (13d) we get
Tzexp(_F2N+l)! (15)

which, if inserted into Eqgs. (13b), (13c), gives explicit expres-
sions for R, etc.

V. APPLICABILITY CONDITIONS

The approximate formulas for R, T, and A, derived in
Secs. 11 to IV, are applicable to functions Q *(z) which resem-
ble one of the models (i) to (iii), in the following sense:

(a) @ *(z) should have the same type of zeros and poles on
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or close to the real axis, i.e., two cutoffs for models (i} and (ii},
or one real cutoff and one real resonance for model (iii).

(b) @ *(z) should admit propagating wavesatx — -+ co.
The meaning of (b) and the definition of R and T are obvious
if Q }(x) — const >0asx — + oo. A more general situation
is described in Ref. 5, Chap. 9, in connection with the poten-
tial barrier penetration. Thus one can define R and 7 unique-
ly by using the JWKB approximation (or higher-order
phase-integral approximations) at large distances from the
origin, |x| > x,, if @ *(x) > O there, and these approximations
tend to exact solutions of the wave equation asx — + o0.
This in turn requires the quantity called the y-integral to
remain finite with the integration intervals extending to in-
finity { — o0 <X < — X, and X, <X < o). Approximate for-
mulas for such u-integrals are derived in Ref. 8 under the
assumption that Q *(z) has an isolated singular point at
Z= o, but not an essential singularity; this allows for the
Laurent expansion about infinity, of the form

Qz(z)zczm”[l+ ngz’k . (16)
k=1

In that case the u-integrals in question are only finite for m

> — 1 [see Egs. (64) and (65) in Ref. 8]. Thus to comply with

Q?(x)> 0 for |x| > x, we must require

¢>0, m_ =024,.-. (17)

This includes Q %(x) — const > 0 (m , = 0), but additionally
also Q*(x) - + «,as X — + 0.

VI. EXAMPLES

Formulas for R, T, and A, derived in Secs. II to IV, are
particularly useful if the I -integral (2) can be calculated ana-
lytically. For example, if Q %(z) is a rational function, I, .,
is often an elliptic or even elementary integral. These two
possibilities will be illustrated by two examples given in this
section. However, the amount of algebra needed in higher
orders is often prohibitively large even if the final results are
not too complicated. Such cases can only be treated by per-
forming part of the algebra automatically by computer. In
our examples we searched for an effective compromise
between manipulations done by hand, and symbolic compu-
tations. This methodology, described in Appendices B and
C, should be useful also in other, more physical, applica-
tions.

Our first example,

Q=071 —(Q% ~ Q5 +1),

Q. >0, 05<Q7%, (18)
describes symmetric propagation with two cutoffs (or trans-
mission through a symmetric potential barrier). The applica-
bility condition (17) is obviously fulfilled, and one can use
Eq. (6) or (7d) to calculate Tand R. We assume Q2 < Q2 to
prevent the zeros of Q %(z), +- z,, from getting too far from the
x axis (i.e., beyond the poles at + /). In any order the I'-
integral (2) associated with + z, can be expressed in terms of

the complete elliptic integrals K (k ) and E (k ) (see Appendix
B}, e.g.,
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I =40 [E(k)—k7K(k]]

=Q 7wkl +k?/8+ ), (19a)
Ir,—Ir,=(6Q,_k%k?""
X[(1+Tk)E(k)—(143kH)k?K (k)]
=(37/8Q,)(1 + $k* + ), (19b)

Iy — I'y = (1440Q 3 k 5k '%)~!
X [(56 — 265k ? + 459k * — 1243k ° — 31k ¥
XE(k)— (56 —237k? + 351k*
— 727k + 45k 8 K (k)]

=(1357r/1024Q3w)(1 +%§§k2+...), (19¢)
where
ki= —2} =Q3/0%, k?=1—k?2 (20)

The power series in k 2 in Egs. (19a)~(19¢) gives the behavior
of the Iintegrals in the limit |Q 5] <Q 2% . For 0} <0 (i.e.,
k2 < 0) we can use the imaginary modulus transformations
(see Eqgs. 160.2 in Ref. 9}

Kk)=k(K(k), Ek)=Ek)k!,
k2= —k%k®? kP=1/k" (21)

For Q% = 0 (double zero, z3 = k> = 0) we obtain I', =0,
and I,y , , >0for N>0,if Q2 is not too small, e.g.,

I';=37/8Q, >0,
(22)
s =1T5(1—45/1280Q2%)>0, if Q2 >4, etc.

This means, in view of Eq. (5), that in the parabolic model the
double zero, z; = 0, is represented in first order also by the
double zero, 73 = 0, but in higher orders by two simple pure
imaginary zeros (3} <0). In Epstein’s model with the con-
straint (11a) or (11b} the double zero in question is represent-
ed, in any order, by the double zero. This is a consequence of
the constraints which now read

Al Pl] Q% = Q5/Q% —23) (23a)

Al )?1Q% —al =04/Q7%. (23b)
[Inserting in Eq. (23a) or (23b) Q4 = O we obtain u, =0,
which is equivalent to z = 0.] In general, calculating
Q. [ =(Q, + Q_)/2] from Eq. (8) and inserting it into Eq.
(23a) or (23b), a nonlinear equation for a is obtained, which
can easily be solved numerically. For @ 2 = O the constraints
(23a), (23b) reduce to

a=0Q2. (24)
Inserting Eq. (24) into Eq. (8) we arrive at an identity for
N =0, but in higher orders we obtain (¥ > 0)

1 1 1

= + = =
80, 128QZ° 1024Qi°
(SN F2N+1
ok e = (25)

Equation (25) requires Iy, , >0, see Eqgs. {22). For N=0
we can only go to the limit Q0§ — 0. Eliminating
a(= Q2% — Q3)from Egs. (8) and {23a), (23b), and using the
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TABLE I. Transmission coefficients for @ *{z) given by Eq. {18), for 02 = 0; numerical (T') versus the DPIA results up to fifth order (T, T, Ts), first line
corresponding to the parabolic model, Eq. (6}, and second line to Epstein’s model, Eq. (7d).

(58 T T, T, Ts
1.0 0.731938 1803 0.5 0.76 0.68
0.78 0.78 0.68
3.0 0.652579 142 5 0.5 0.664 0.646
0.671 0.671 0.646
10.0 0.589493 844 5 0.50 0.592 0.5889
0.593 0.593 0.588 9
300 0.5529928210 0.50 0.5536 0.55294
0.5538 0.553 8 0.552 95
100.0 0.529318032 6 0.50 0.5294 0.529 315
0.5295 0.5295 0.529 315
300.0 0.516978 101 1 0.50 0.51700 0.5169779
0.51701 0.517 01 0.5169779
1000.0 0.509 309 335 8 0.50 0.509 313 0.509 309 326
0.509 314 0.509 314 0.509 309 327
3000.0 0.505 376 417 1 0.50 0.505 3770 0.505 376 416 3
0.5053773 0.505 3773 0.505 376 416 3
10000.0 0.502 945105 8 0.500 0.502 945 21 0.502 945 105 5
0.502 945 25 0.502 945 25 0.502945105 5

power expansionsin Q2/Q2 and Q2/Q2 we easily find for
either of the constraints (23a), (23b)
0.(Q5 >0 N=0)

=0.(@3=0N=1)=30,. (26)
This indicates that the results obtained from Epstein’s model

with the adopted constraints, in first order, tend to those in
third order as Q3 — 0. One should therefore expect Ep-

stein’s model to be particularly good in first order.

In Tables I and II, we tabulate typical results for 7" from
the parabolic and Epstein models versus results obtained nu-
merically. In first order, as expected, the Epstein model is
significantly better than the parabolic one, while in higher
orders the difference between them is insignificant. Thus in
this application the extra freedom {but also extra complica-
tion) in the Epstein model are not paid for in higher orders;
this, perhaps, would be the case if the propagation, unlike the

TABLE II. Transmission coefficients as in Table I but for Q2 #0; Q2 = 10°. First line corresponds to the parabolic model, Eq. (6), second line to Epstein’s
model, Eq. (7d), with the constraint (23a), and third line to Epstein’s model with the constraint (23b).

[0k T T, T, p
100.0 0.999 959 151 0 0.999 957 0.999 959 151 5 0.999 959 150 7
0.999 959 10 0.999 959 151 8 0.999 959 150 7
0.999 959 08 0.999 959 151 8 0.999 959 150 7
10.0 0.737 375081 4 0.730 0.737 378 0.737 375073
0.737 357 0.737 379 0.737 375074
0.737 350 0.737 379 0.737 375074
1.0 0.534 107 412 5 0.525 0.534 111 0.534 107 403
0.534 109 0.534 112 0.534 107 403
0.534 108 3 0.534 112 0.534 107 403
—-10 0.484 471584 8 0.475 0.484 475 0.484 471 575
0.484 479 0.484 476 0.484 471 576
0.484 480 0.484 476 0.484 471 576
—10.0 0.277 801 2490 0.270 0.277 804 0.277 801 242
0.277 83 0.277 805 0.277 801 242
0.27783 0.277 805 0.277 801 242
—100.0 0.564 896 364 1 10~* 0.546< 10—+ 0.564 901 x 10™* 0.564 896 352 107+
0.5655x 104 0.564 904 10™* 0.564 896 353 < 10~*
0.5657x10~* 0.564 904> 1074 0.564 896 353 104
— 1000.0 0.787 227 218 10~3° 0.77x 107 0.7872274x10~% 0.787227212x10™%°
0.791x10~% 0.787 228 2 10 0.787 227212107
0.792%x 103 0.787 228 3 10~ *° 0.787227 212 107*
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parabolic model, was asymmetric. Tables I and II indicate
that in fifth order both models give excellent accuracy if 02,
is large enough, the accuracy only weakly dependingon Q3.
Note that for @2, = 1(Table I) the parabolic model gives the
best accuracy in the third rather than fifth order. The exis-

tence of such an optimum order is typical of the PIA, but the
optimum is usually far beyond the practically interesting or-
ders. Different behavior is only possible if the first order

accuracy is rather poor,® which in our example corresponds
toQ2 S1.

TABLE III. Reflection, transmission, and absorption coefficients (R, T, and 4 ) for Q %(z) given by Eq. (27); numerical results followed by the DPIA results in
order 1, 3, and 5, for propagation towards the cutoff (first four lines), and towards the resonance.

K P R T A
1.0 0.3 0.550 309 14 0.272 873 88 0.176 816 98
0.40 0.37 0.23
0.58 0.24 0.181
0.9 0.04 0.04
0.032 264 53 0.272 873 88 0.694 861 60
0 0.37 0.63
0 0.24 0.76
0 0.04 09
3.0 0.1 0.406 699 20 0.362 300 65 0.231 000 14
0.38 0.39 0.237
0.400 0.368 0.233
0.410 0.360 0.2304
0.000 235 11 0.362 300 65 0.637 464 24
0 0.39 0.61
0 0.368 0.632
0 0.360 0.640
10.0 0.03 0.375 099 24 0.387 546 38 0.237 354 38
0.373 0.389 0.2378
0.375 00 0.387 62 0.237 37
0.375 087 0.387 556 0.237 356
0.2x10~ " 0.387 546 38 0.612 453 62
0 0.389 0.6105
0 0.387 62 0.612 37
0 0.387 556 0.612 443
300 0.01 0.372 791 596 6 0.389433 3814 0.2377750220
: 0.3725 0.389 6 0.237 82
0.372790 5 0.3894342 0.2377752
0.372 791 58 0.389 433 391 0.237 775 025
s10Y 0.389 433 3814 0.610 566 618 7
0 0.3896 0.610 36
0 0.3894342 0.610 565 8
0 0.389 433 391 0.610 566 609
100.0 0.003 0.372538471 4 0.389 640 703 6 0.237 8208250
0.372 52 0.389 66 0.237 825
0.372 538 463 0.389 640 710 0.237 820 827
0.372 538471 4 0.389 6407030 0.237 8208256
s107"7 0.389 640 703 6 0.610 359296 4
0 0.389 66 0.610 34
0 0.389 640 710 0.610 359 290
0 0.389 640 703 0 0.6103592970
30.0 0.002 0.029 543 868 58 0.828 116 7017 0.142 3394297
0.029 51 0.828 20 0.142 28
0.029 543 7 0.828 117 1 0.142 3392
0.029 543 867 0.828 116 705 0.142 339 428
107" 0.828 116 701 7 0.171 883298 3
0 0.828 20 0.171 80
0 0.828 117 1 0.171 8829
0 0.828 116 705 0.171 883 295
30.0 0.05 0.982 291 0579 0.008 894 022 888 0.008 814 919 215
0.982 24 0.008 92 0.008 84
0.982 2909 0.008 894 12 0.008 815 02
0.982 291 056 0.008 894 024 1 0.008 814920 4
s1077 0.008 894 022 888 0.991 105977 1
0 0.008 92 0.991 08
0 0.008 894 12 0.991 105 88
0 0.008 894 024 1 0.991 1059759
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Our second example
QU)=K*Z + 1Yz/(z—p), K?*>0, p>0, 27

describes propagation through one cutoff (at z = 0) and one
resonance (at z = p). It differs from the Budden model, Eq.

(13a), only through the factor (z* + 1)* which was chosen so
as to satisfy Eq. (17) (m_ = 4), and lead to elementary inte-
grals. Thus I, , | associated withz = Oandz = pisan alge-
braic function of K and p for arbitrary N (see Appendix C),

e.g.

I'/mKp=1+3p’, (28a)
I's—I _S(18+13p%) — (4 +9p7)
7Kp 32K*D(1 + p?)
1 ( 13
= 1— —=p? ) , 28b
2K° T3 (28b)
Li—r, _ 1
7Kp 262144K*D (1 + p?)?
X [25 (248560 + 928704p>
+ 1362813p* + 897564p° + 222595p%)
— 11200 + 255504p” + 1325064p*
+ 2159781p° + 1502466p® + 385645p'°)
15 ( 1, )
=——{1— —p* 4 -}, 28¢
128K 4 37 (28c)
where

S=1+(1+p)"% D=[25(1+p)1'% (29)

Inserting these I -integrals into Eq. (15), and the result into
Eqgs. (13b), (13c), we obtain approximate formulas for R etc.,
in successive orders. Typical results are tabulated in Table
II1 versus results obtained numerically. In the first five cases
we increase K while keeping Kp = const, which leads to a
systematic increase in the accuracy of the DPIA. The last
two cases demonstrate only weak dependence of the accura-
cy on p for K = const.

When integrating the wave equation numerically we
were using third rather than first-order phase-integral ap-
proximation to decompose ¥(x) into incoming and outgoing
waves at large distances (see Sec V). This reduced the com-
puting time by several orders of magnitude for Q% > 1, or
K %> 1. Finally in the first example, Eq. (18), the computing
times ranged from 20 seconds for @2, = 1 to 95 seconds for
Q2 = 10% versus 0.07 second for a typical DPIA calcula-
tion (both models included), on the CDC CYBER 73 com-
puter. The second example, Eq. (27), required from 136 se-
conds for K = 1 to 690 seconds for K = 100, versus 0.02
second for the DPIA calculation. The computational details
will be described elsewhere, and the programs are obtainable
from the author on request.
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APPENDIX A: I-INTEGRAL FOR EPSTEIN’S MODEL
Using Egs. (7a), (7b) (L = 1) in Eq. (2) we obtain

P =L 3gc [P2(un‘/2[
(A1)

1—u?
where C, encircles #, , in a positive sense. Functions Y,, (u)
have the following general form {c,;, = const):

N ~
1+ Z YZ,,(u)} du,

6 n=1

: 1—u?
2n (u =
Py(u)
5:1 ! anl
X[ + |, (a2
a’ =1 502 (w—uy)
8, = 2n)/(n)*(2n — 1) 4", (A3)

This can be shown by first checking that Eq. (A2) holds for
n = 1, and then using the recurrence relations for Y, [see,
e.g., Eq. (22) in Ref. 8], along with Eq. {31} in Ref. 8. In view
of Egs. (Al)and (A2) I, , , involves the following integrals
(1=0,1,2,...):

§ fu— )~ (P~ du
C,

-
—u — _
=§ u l+1)(a 12 4 Zajlku k)du
Cu

k=1
=2mia~ "% &, (A4)
fﬁ T ) [Pu)]) du=F 2L, (AS)
c. Q.
which easily leads to Eq. (8); derivation of Eq. (A5) is similar
to that for Eq. (C4).

APPENDIX B: /-INTEGRAL FOR EQUATION (18)

Assume first that @ > 0, i.e., the zeros + z, are pure
imaginary. Equation {19a) follows easily by integrating along

FIG. 1. Integration contours for ¢ *(z) given by Eq. (18).
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the two lips of the cut connecting + z;, see Fig. 1, and using
Eqgs. 220.04 and 318.02 of Ref. 9.
Using Eqgs. (23a), (23b) of Ref. 1 we can write

Yu(2) =5Q;2"P3n—1(22)(22—2ﬂ_3"(22+ 1)~
(B1)
where the polynomial P;,, _ , (z°) is independent of @2 . This

allows for the following decomposition into irreducible frac-
tions:
Y..(2)4Q%(2 — 77)
n rnj n—-1 snI
=y —— + _— {B2)
S+ 1y 1;1 Z=z)
Using Eqs. (18) and (B2), the I-integral (2) can be written as

r r+ S —t
wwy1 =41+ ;
n‘ngﬂ'_
X(Zn: ry R + 3”2_:15’:1 51)» (B3)
1 .y
Rj=ZSSC(zZ+1)
X [(22 + 1)@ — 2)] ~ 7 dz, (B4)
_(=y -t
S, = Py i(ﬁ z%)
X [+ 1) —23)] ~ " dz. (B5)

To determine R; (“regular” contribution to I") we integrate
along the cut connecting + z,, which yields {see Eq. (20},
and Eqs. 219.07, 315.00, 315.02, and 315.05 in Ref. 9]

Ry=K(k), R =E(k)/k", v
R, =1+ k]! (B6)
X[22—k)R, — (2 —1)R,_,], j=12,...
To determine S, (the “singular” contribution) we deform the
contour C as shown in Fig. 1, and take the limit R — o.
Contributions coming from C £ vanish as R — «, and

those corresponding to integration along C , lead to (see
Eqgs. 215.06, 318.00, 318.02, and 318.05 in Ref. 9)

So=K(k), S =(k%k"?)[k"’Kk)—Ek]],
S =121+ 1)k?k?} ! (B7)
X [21(1—2k%S,+I-1)S,_,], I=12,...

For Q2 <O (real zeros + z,) calculations are along similar
lines. They lead to the results which can also be obtained
from those for Q ; > 0 by using Egs. (21).

Finding r,; and s,, from Eq. (B2), R; and S, from the
recurrence relations (B6) and (B7), and finally I, ; from
Eq. (B3} is an algorithmic procedure which can be pro-
grammed on a computer. Our Egs. (19b), {19¢) were obtained
by using the REDUCE system for algebraic manipulations
implemented at the QZ computer in Stockholm.
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APPENDIX C: I-INTEGRAL FOR EQUATION (27)

Expanding Q (z) in a Laurent series convergent for
|z| > p we easily calculate I'; given by Eq. (28a). Using Eqs.
(23a), (23b) of Ref. 1 we find

Youle) =K ~"Pgl2) 2”2+ 1)" Mz —p) 7"

. (C1)
and so we can write
Y,,(2) K*"z(z* + 1)
3n—-1q . n b"
=T §
=1 2’ =1{z—p)
4n—1 c C*
+ [ nm. + nm ] . (CZ)
,,,2;1 (z—1i" z+4"

Equations (C2) and (27) indicate that I, , , — I"; involves
three types of integrals (¢ = 0, p, and + i):

Im(a)=§§fc<z—a)—f"[z(z~pn g,

m=12,.. (C3)
The first two integrals are zero (Laurent expansion), and
I, (i) can be calculated by deforming the contour C so as to
include apart from z = O and z = p also the mth-order pole at
z =i. The integral along the deformed contour is zero, i.e.,

2r dm [z —p)] P

L0+ =0, Cc4
T dzm - e (4
which easily leads to [1,,(— i) = I,,(1*]
Doy =1 +4r
N 1 4n—1 1
X
25 2 mo
m—1 —1/2
XRe[ic,,,,, d”" [zp ~2)] ] (C5)
dzm—‘ z=1i

where the main branch of the square root must be taken.

Equations (C2) and (CS)define I,y , , — I'yinan algor-
ithmic way for arbitrary N, and can be the basis for symbolic
computations. Our Egs. (28b), (28¢c) were obtained by using
the REDUCE system mentioned in Appendix B.
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An extended coherent state theory is presented for the noncompact sp(3,R ) group which reveals a
simple relationship between the sp(3,R ) algebra and its contracted u(3)-boson limit. The
relationship is used to derive a remarkably accurate analytic expression for sp(3,R ) matrix
elements for the generic lowest-weight representations. The expression is shown to be exact
whenever the states involved are multiplicity free with respect to the u(3) subalgebra. It is further
shown how exact matrix elements are easily calculated in general. Dyson and Holstein—-Primakoff

type u(3)-boson expansions are given.

PACS numbers: 03.65.Fd, 02.20. + b, 21.60.Fw

I. INTRODUCTION

Coherent states are important for several reasons. Often
a set of coherent states is isomorphic to some classical or
semiclassical phase space; e.g., the classical phase space of
Bargmann coherent states' or the semiclassical phase space
of time-dependent Hartree—Fock theory.”> Thus coherent
states facilitate classical or semiclassical descriptions of
quantal systems.

Coherent states also serve a useful function as generator
states for the basis vectors of a representation space. In parti-
cular, techniques for using generator states to facilitate mi-
croscopic sp(3,R) model* calculations of collective states
have been developed by Filippov et al.” The analysis of this
paper is very relevant to that program.

Another important application of coherent states is to
boson expansion theory (see Refs. 6 and 7 for reviews and
lists of references). Boson expansions are useful because of
the simplicity of the Weyl algebras and the fact that, in many
important physical applications, it is sufficient to retain only
the leading terms. In this way, one can formalize, and pro-
vide the corrections to, the familiar approximation of treat-
ing composite fermion systems, like a Cooper pair or a super-
position of particle-hole pairs, as bosons.

Coherent state representations are also directly useful
in their own right. For example, many problems are more
simply executed in Bargmann (coherent state) space than in
the more traditional Schrédinger Hilbert space (cf. Ref. 8,
for example).

In this paper, we construct a coherent state realization
of the real symplectic group Sp(3,R) [sometimes called
Sp(6,R )} and use it to obtain expressions for the matrix ele-
ments of the sp(3,R ) Lie algebra for all the lowest-weight
representations, i.e., the discrete series with lower bound.

Our coherent theory differs from that of Perelomov®
and Onofri'® as follows: If |0) is a lowest weight state for a
group G and HC G is the little group, a Perelomov—Onofri
coherent state Hilbert space is a space of holomorphic func-
tions on G /H. Thus, in essence, their coherent state repre-
sentations are induced from one-dimensional representa-
tions of a subgroup. In our approach, representations of
Sp(n,R ) are induced from arbitrary representations of the
maximal compact subgroup U(n). Thus our coherent state
Hilbert space is isomorphic to a space of holomorphic vec-
tor-valued functions on Sp(n,R )/U(n) which take values in
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the given U(n) representation space. Our approach is there-
fore closely related to the theory of induced representa-
tions."" It also has much in common with the Sp(n,R ) repre-
sentation theory of Ref. 12.

Whereas standard coherent state realizations naturally
generate boson expansions,” our realization generates U(n)-
boson expansions which are more useful for calculating ma-
trix elements in an Sp(n,R }DU(n) basis. In this paper, we
restrict consideration, for simplicity, to n = 3. However, the
extension to » > 3 is straightforward.

The action of the sp(3,R ) algebra on N-particle Hilbert
space is given by a standard realization* of an sp(3,R ) basis

N
A. = z bt bjgj, =123,

y
n=1

¥y zbm’bnj’

1
Cij TZ(qubnj +bnjbIli)

B

It

N
where
1 ad
bin = xin 4
\/i( + axin)
b =71§—(x,-" -2 ) (12)

are Weyl boson operators. Thus it is apparent that one al-
ready has, in Eq. (1.1), a boson expansion for the sp(3,R )
algebra. However, it is an uneconomical expansion involving
3N distinct bosons. One can of course put N = 1. However,
the resulting realization then admits only the relatively tri-
vial one-particle (1,1,4) and (3,4,1) representations. Further-
more, we are particularly interested in representations for
large N. What is wanted, therefore, is a realization that is
both economical in terms of the number of bosons it invokes
and that, at the same time, admits the generic (¢,,0,,0;) re-
presentations.

In the large NV limit (N % 50), it has been shown that the
sp(3,R ) algebra contracts to a simple u(3)-boson algebra'’ in
which the 4; and B, raising and lowering operators behave
like single boson creation and annihilation operators, respec-
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tively. It was pointed out by Smirnov'* that these boson lim-
its must surely be the first terms of a Dyson'’ or a Holstein—
Primakoff’® expansion, corresponding to embeddings of
sp(3,R ) in the u(3)-boson enveloping algebra. We show that
such expansions, in which pairs of bosons behave to leading
order like single bosons, are obtained directly from the co-
herent state realization. We recall that coherent states for a
symplectic algebra were derived originally by Barut and Gir-
ardello'’ for the sp(1,R ) algebra. They were constructed for
the sp(2,R ) algebra by Mlodinow and Papanicolau'® and
used to obtain an N— o0 contraction of sp(2,R ) with applica-
tions to the s-wave states of the helium molecule in mind.
Deenen and Quesne'® similarly analyzed the sp(3,R ) algebra
and obtained a Barut type coherent state realization applica-
ble to O (V) invariant representations. They furthermore ob-
tained Dyson and Holstein—Primakoff boson expansions.
Although too restrictive for our purpose, these papers pro-
vide a valuable background for the more ambitious objective
of finding realizations that admit all the discrete series repre-
sentations of sp(3,R ) with lower bound [i.e., all the lowest-(or
highest-)weight representations], which are precisely the re-
presentations that are relevant in applications of the sp(3,R )
model* to nuclear collective states.

Our analysis was motivated, in part, by a recent pre-
print of Castafios et al.?° which gave analytic expressions for
the matrix elements of sp(3,R ) for the (o, = 0, = ;) repre-
sentations. The similarity between their expressions and re-
cently obtained matrix elements for the u(3)-boson algebra®'
suggested a closer relationship between the sp(3,R ) and u(3)-
boson algebras than was hitherto envisaged. This turned out
to be the case and in a recent letter,?? it was shown that the
results of Ref. 20 are a special case of a general analytic
expression which gives exact matrix elements whenever the
states involved are multiplicity free in an sp(3,R ) Du(3) clas-
sification. Furthermore, it was shown that, even when not
exact, the analytic approximation to matrix elements is re-
markably accurate. The coherent state origin of the analytic
expression is presented here and it is further shown how to
calculate exact matrix elements in general.

Note added in proof: Following submission of this pa-
per, a preprint was received from Deenen and Quesne on a
partially coherent state representation of the sp(V,R ) alge-
bras which has substantial overlap with this paper. They
have also reproduced the analytic matrix elements of Cast-
anos et al.”° using coherent state methods in a letter article
[J. Deenen and C. Quesne, J. Phys. A: Math. Gen. 17, L405
(1984)].

Il. NOTATIONS AND MAJOR RESULTS

In this section we summarize the results and in subse-
quent sections derive and enlarge on them. The basic result is
a coherent state realization of the Sp(3,R ) algebra:

I'(4;) = (C2); + (C2); — 4z + (2V2)

I'B;,)=V

i ijr
I'(Cy)=Cy +(2Y),, 2.1

where (z;) is a 3X 3 array of complex variables, V,; is the
differential operator

i

3
Vy=(1+ 6,,-)8—, (2.2)

i
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and the (C;) are a basis for an “intrinsic” u(3) algebra. Note
that we use the matrix notation of Deenen and Quesne,"®
e.g., (Cz); = 2, Cy 2y, ete.

The elementary building blocks of this realization have
a simple agebraic structure, viz.,

[Viszu ] =846u + 6uby,
[Cij’(clk ] = 6jlcik - 5[k Cy,
[Cyzu ] = [Cy, Vi ] =0. (2.3)

Indeed, they are also components of a coherent state realiza-
tion of a u(3)-boson algebra, viz.,

7/((1;) = z[j,
7/(011) = Vij)
NC;) =Gy + (2V)y, (2.4)

where af; = af; and a; = a;; are the boson operators of a six-
dimensional Weyl algebra

[aij’a;rk ] = 6i16jk + 6ik5j1’ (2.5)
and
[Cy.al] = [Cpoan] =0. (2.6)

An sp(3,R ) lowest weight unirrep'? is characterized by
the u(3) quantum numbers o = (0,,0,,0;) of its lowest weight
state |o);i.e.,|o) satisfies

Cﬁ|‘7> =Ui|0>s
C;lo) =0, i<j, (2.7)
B;lo) =0,

for ij = 1,2,3. The carrier space Hg,, for this representation
is constructed by operating on the lowest weight state with
all polynomials in the raising operators.

A u(3)-boson unirrep'? is likewise characterized by the
u(3) quantum numbers o = (0,,0,,0;) of its lowest weight
state |o), which satisfies

Cilo) = a;|o),

Cylo) =0, i<j, (2.8)

a;lo) =0,
for all ij = 1,2,3. Note that we now use rounded kets, as
opposed to angular kets, to distinguish u(3)-boson and
sp(3,R ) states.

A convenient U(3) coupled basis for the carrier space
Hg, of this representation is obtained by first combining the
boson raising operators (a};) into U(3) tensors X "(a’) of rank
n = (ny,n,,n3). These tensors are then U(3)-coupled to the
lowest weight state |o) to give an orthonormal basis of states
of total U(3) symmetry o = (w,,0,,w;), with multiplicity p,

|onpwa) = N, (X "(a%) X [0))5°, (2.9)

where N,,,,,, is a normalization constant and a indexes
a basis for the U(3) unirrep w. Since the (}) are themselves
components of a (2,0,0) U(3) tensor, the construction of
X "(a?) is standard. Its lowest-weight component, for exam-
ple, is given explicitly by
(n, — ny)/2

gt
a a
Xgha') = (a2 P

¥ t
a; 4

X (det at)™, (2.10)
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An orthonormal basis for HZ, will later be defined im-
plicitly by a mapping HJ,—H?, . From the two isomor-
phisms (2.1) and (2.4}, one immediately infers the Dyson type
realization of sp(3,R )

D{4;) = (Ca"); + (Ca"); — 4a], + (a'aa")

ij M
D(C;) =G, + (a'a) (2.11)

which is manifestly nonunitary. The nonunitarity arises be-
cause, whereas the coherent state realization I” is unitary
with respect to the Sp(3,R ) measure, it is not unitary with
respect to the U(3)-boson measure. Thus, to obtain a unitary
action of Sp{3,R ) on the U(3)-boson space, one must take
account of the change of measure.

It will be shown that there exists a Hermitian positive
definite U(3)-scalar operator « that transforms I” into a uni-
tary realization y, with respect to the U{3)-boson measure,
with

ijr

iy

1

Yd;) =«" A,k = (o7 S

VB;)=«"'T' B,k =«"'Vxk,

NC;) =« 'L (Cylk =C; + 2V),. (2.12)
The slight abuse of notation of using the same symbol ¥ to
denote both a realization of Sp(3,R ) and of the U(3)-boson
algebra [Eq. (2.4)] will be convenient and unambiguous.

The determination of « is greatly facilitated by the ob-
servation of the identity

rid,)=[Az,), (2.13)
where A is the U(3) invariant
A =1[(C + zV)C + 2V}] — itr{zVzV) — tr(zV).
(2.14)

Together, Egs. (2.12) and (2.13) imply

[Az;] =Kz (2.15)
This expression is particularly useful because A is diagonal
in the basis (2.9) with eigenvalues

12 (onw) =-i—2[2w,2 — n? + 8(w;, — n;) — 2i2w; — n,)].

(2.16)
Equation {2.15) implies
K2 tr(zz) = tr([A,z]K%2), (2.17)

which generates recursion relations for the matrix elements
of k¥ which are easily solved.

Since « is a U(3) scalar, it has nonvanishing matrix ele-
ments only between basis states, (2.9}, of the same wa. Thus,
states which are unambiguously identified by wa are neces-
sarily eigenstates of k. We shall refer to such states as “‘sim-
ple.” One infers that matrix elements of ¥{4,;) between sim-
ple states are given by
(0'a'|ydy)lwa) = (2 (') — (2.18)

where we now suppress all but the U(3) labels wa of the
states to emphasize the restriction of this equation to simple
states. From Eq. (2.18), one immediately infers a correspond-
ing relationship between sp(3,R ) matrix elements in HZ, and
U(3)-boson matrix elements in H,

2e)Ho'a'|z;|0a),
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(0|4 o) = (2(@) — 2 (@) *(’||a"]|o). (2.19)

Matrix elements for the sp{3,R ) lowering operators are ob-
tained from (2.19) by the general relationship

{onpw||B |lon'p'w’)
(A dimid ) dimiAg) ] 2

X (on'p'e’||4 |lonpw)*, (2.20)
where
dim(ig) =44 + D + VA +pu+2) 2.21)
is the dimension of the SU(3) representation (Ax) and
A=w;—a, U=w,— s (2.22)

etc. The matrix elements of the u(3) operators (C;) are well-
known.

We recall that the matrix elements of the u(3)-boson
algebra are known and are given, in Ref. 21, by

(on'p'@’||a’||onpw)
— [ . 1)/{'+u’—l—u
X U(A ot JAntt, A 'w)205Ap)p(A 120 )0)
X (n'[j@"{n),
where U is an SU(3) Racah coefficient,
/1020'1_025 Hy, =0y — 03y

Hp =Ny — Ny,

{2.23)

Ay =n—ny (2.24)

etc., and
(n']la"||n)
_ [ (1 + 4)ny —ny + 2)(ny —ny +3) ]]/2
(ny — ny + 3)iny —ns +4)
X 5"1'.", + 25"z'v"z 5”3',’13

{ny, + 3){n, — n)ln, —n3 +2) 172
+[ (n, —ny— 1){n, — ny + 3) ]

X Bn,’,n, Lsnz',n, + 251'13',)1,

(ny + 2)(ny, — n3)(n; — ns + 1)1
+[ (ny — n3)ny —ns — 1) ]

X8, 0,00, Onym 42 (2.25)

Thus Eq. (2.19) gives analytic expressions for all the
matrix elements of the sp{3,R ) algebra between simple states
for any sp(3,R ) unirrep (0,0,,05). For representations with
0, = 0, = 03, all basis states are simple and the analytic ex-
pressions obtained are then identical to those given by Cas-
tafios et al.*° for this special case.

For nonsimple states, the matrix elements are obtained
from Eq. (2.12) in the form

(io'||4 ||lw) = YKyl o' |a' ko)X g @), (2.26)

ik

and can be evaluated following the solution of some simple
recursion equations to obtain the elements of «{w) for each w.

A neglect of the off-diagonal elements of «, with respect
to the basis (2.9), gives the approximate analytic expression
for sp(3,R } matrix elements
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(on'p'e’ |4 )| onpw)
=(2 (on'w’) — 2 (onw))"*(on'p' @' ||a’||onpw).
(2.27)
It has been shown?” that this expression gives remarkably
accurate results particularly for large o. The reason is ex-
plained in Sec. VII, where it is shown that the approximate
matrix elements (2.27) correspond to the approximation

yid;)=A "z,

V(B )=V;A 2 (2.28)
Y (Cij) =C; + (zv)ij’
where A ™. z and V-A " are defined for integer » by
Arz=[AA""1z], A-z=[Az],
(2.29)
VA"=[VA""LA], VA=[VA]

and A '/2. zand V-A /2 are extensions of these definitions to
n = 1. It is shown that the approximation (2.28] is accurate
up to terms of order [(A, + u,)/20]* In particular, it is
exactford, =pu, =0

Fmally, note that the replacement z, —>a,,,V —a; in
Eq. (2.12) induces a unitary Holstem—anakoﬂ' type real-
ization of sp(3,R) in terms of the u(3)-boson algebra. It is
given explicitly in Sec. VII for representations containing
only simple states, e.g., 0, = 0, = 0. In general, the leading
terms of the Holstein—Primakoff expansion are given by

P(4;) =204}, + {20 {(Ca"); + (Ca");
— (20 + 4)af, + (a'aa®),; } + -,
V20a; + W20 {(aC), + (aC)
— (20 + 4)a; + (aa’a), } + -,
P(C;)=C; + (a'a),, (2.30)
where o = (0, + 0, + 0,)/3. Dropping the second-
and higher-order terms of P(4,;) and P (B;;) gives precisely
the result obtained previously by a contraction of sp(3,R ) to
the semidirect sum u(3)-boson algebra. Thus the Holstein-

Primakoff expansion gives the higher-order corrections to
that contraction limit.

(ll. COHERENT STATE REALIZATIONS OF U(3) AND
GL(3,C)

Consider a unirrep U of U(3) on N-particle state space,
for example. This representation naturally extends to a non-
unitary representation 7of GL(3,C ) by the standard process
of complexification.

Let o) be any fixed state in the representation space,
e.g., the lowest weight state. Then any state |¥ ) in the space
can be represented as a coherent state wave function on
GL(3,C) by

P(B;) =

= (g|¥)=(a|T(e)|y), (3.1)
where
8) = T(ghlo), geGLB,C). (3.2)
A representation I” of GL{3,C) is now defined by
[ (@)¢] = ¢iga). (3.3)

Evidently I'" is isomorphic to 7. However, I"replaces what is
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generally a complicated realization in turns of functions of
many-particle coordinates by much simpler and known
functions. More important, it is a vital first step in proceed-
ing to sp(3,R ) coherent states.

To obtain the explicit realization I" (X ) of an element X
in the gl(3,C) algebra, first expand

X= ZX EY, (3.4)
where EY is the 3 X 3 matrix with /k element
=8 6. (3.5)
Then, putting a = exp(X ) and replacing ga in Eq. (3.3) by
glX) = g exp(X), (3.6)
we obtain
I'(E;)¥(g)=
X=0
a X
=¥ g,k( ) 9¥g) (3.7)
% 09Xy lx_o 98k
giving
i (3.8)
=285 - agl,
To simplify subsequent expressions, we define C; by
C;(g|¥) = (glC;|¥). (3.9)
With this definition
a N
=g, — + 8,—. 3.10
i Zgl aglj i 2 ( )

If |o) is now chosen to be the lowest weight state for a U(3)
representation o = (¢,,0,,0;), then its coherent state wave
function

X'g) = (glo)
must, by definition, satisfy
C,X"9g)=0, i<j,
X"(g) = 0, X ).

These equations have the well-known solution
g, — O, g g 2 2= a;
X gy = (g,,) =[5! (det g)*.
821822
Note that the normalization is correct because

Xlg=I)={olo)=1. (3.14)

The overlap integral for different coherent states is also
obtained immediately. From the definition, it follows that

(3.11)

(3.12)

(3.13)

(g'lg) = (o|T(gT(g"|o) = (o|T(g'gNo),  (3.15)
giving
(&'lg) = Xg'g"). (3.16)

The inner product (¢,,1,) can be defined in several ways
to satisfy the fundamental requirement

(¥1¥2) = (| ¥2). (3.17)
One way is to identify the wave functions with Bargmann

wave functions® and hence employ the Bargmann measure
to give
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W) = [ vreilens( - Sk, )

X[ dst- (3.18)
i

Another possibility is to follow Perelomov® and note that the

operator

K= Ulgh)|o) (o] U(g)dv(g),

u(3)
with the integral restricted to g €U(3) and with dv(g) the U(3)
invariant measure, satisfies the equation
U)K =K Ula), a<U(3). {3.20)

Hence, by Schur’s lemma, it is a multiple of the identity.
Inserting K between states, (¥,|K |¥,), gives the inner pro-
duct

Wun) =k | #Te)ig)dvig)

u(3)

(3.19)

(3.21)
with

k-‘=f X “Ug)|? dvig).
u(3)

Both of the above inner products, by construction, must give
the same overlaps for all states in the representation space.
Furthermore, since they are defined independently of a par-
ticular representation (apart from the constant & ) they must
be valid and equivalent (up to the explicit value of k) for all
{(01,0,,05). Other inner products presumably exist that are
only applicable to a particular representation or to some sub-
set of representations. However, in what follows, the explicit
form of the inner product is not needed.

The above construction evidently extends to U(n) and
GL{n,C) for any integer .

(3.22)

IV. COHERENT STATE REALIZATION OF sp(3,R)

The sp(3,R ) lowest weight state |} defined by Eq. (2.7),
is evidently also a U(3) lowest weight state. We can therefore
extend the U(3) [also GL(3,C )] coherent states of Eq. (3.2) to
sp(3,R ) by

|z.g) = exp(—;—tzjz:;fig)\g%

where z; =z, is a 3X3 symmetric array of complex
numbers. Thus we obtain the coherent state wave function

Yz.g) = (z.8|¥) (4.2)
corresponding to any state | ¥ ) in the sp(3,R ) representation
space.

The coherent state realization of a step-down operator
B, is inferred immediately from the identity

(4.1)

(z,g|B,;|¥W) =V ,;{zg|¥). (4.3)
Writing
(z.8]C;|¥) = (gle"Cye "X |¥), (4.4)
with
1
X = “'2"%%317» (4.5)

and using the expansion
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e*Cye™ "= C; + [X,C;]
=C; + (zB);, {4.6)
we obtain, with Eqgs. (3.10} and (4.3),
(z8|C;|¥ ) = (Cy + (2V),;{z.g|¥). 4.7)
Similarly, one finds that
(z.gld,|¥)
= (1€ + (€3 + Sz )eler. @)

Thus we obtain the coherent state realization I” given in Eq.
(2.1).

The volume element can be found for the special case
(o, = 0, = 0, = 0}, using the techniques of Dobaczewski.’
The lowest weight state, in this case, being SU(3) invariant,
we can suppress the dependence of the wave functions on
geGL(3,C) and simplify the coherent state wave functions to

vte) = (olexp( lzjzgsﬁ)l ),

We find the inner product

(4.9)

(P,|¥,) = qu VH2),(2) det{l — zz*° —*d %z, {4.10)

where
1
ko =J det(l — 2z~ * d 2, (4.11)
-1
d% = [[ —— dz, dz2, (4.12)
i<y i

and the integrations are over the domain — 1<|z;|*< 1.
We have not succeeded in finding the sp(3,R ) measure
for the generic {¢,,0,,05) case. However, we have succeeded
in finding inner products that avoid its use and which are
more useful as a consequence.
An sp(3,R ) state |¥,) can be expanded

¥,y = SPLA)|oa), (4.13)

where (P ) are polynomials and o indexes a basis of U(3)
states for the o = (0,,0,,0,) representation. It follows that

(W) =3 j (0a|z.g) (zg|PL(B)| ¥)dv, (z8),

where dv, is the unknown sp(3,R ) measure. Now it is clear
that

(4.14)

(oalzg) = (oa|z = 0,g)=(oalg).
Therefore we have the inner product

W) = [ (oaale) [PLIV) (2] #)]. o vl
‘ (4.15)
where dv(g) is the U(3) measure (cf. Sec. III).
An equivalent inner product, which employs the U(3)-
boson measure, is further obtained by introducing the U(3)-
boson counterpart to |¥,)

|¢1) = > Pala")oa).

Then, since

(4.16)

D. J. Rowe 2666



(oalg)=(oalg), (4.17)

Eq. (4.15) can be augmented to the fully integral form

(W, #,) = f bl2g)zgl B)dultdvlg),  (4.18)
where
du(z) = exp( _L Sz IZ)H ———l——dzu dz¥ (4.19)
2 < ij L 1+8, i ey

is the Bargmann measure.

In what follows, however, we shall not need the explicit
form of the inner product.

Note that, from the definition (4.2), sp(3,R ) coherent
state wave functions are holomorphic functions of z and g.
Furthermore, since the U(3) coherent states are isomorphic
to vectors in the original U(3) representation space, it follows
that the sp(3,R ) wave functions are isomorphic to holomor-
phic vector-valued functions of just the six z variables with
vector values in the U(3) representation space.

V. CHANGE OF MEASURE

It was noted in Sec. II that whereas the realization I” of
sp(3,R ), given by Eq. (2.1), is unitary with respect to the
sp(3,R ) coherent state measure, it is not unitary with respect
to the U(3)-boson measure. Consequently, the induced Dy-
son realization (2.11) is likewise nonunitary. To obtain a uni-
tary Holstein—Primakoff realization, we need to make a
transformation of I" to take account of the different sp(3,R )
and U(3)-boson measures.

Let V¢, denote the Hilbert space of coherent state wave
functions with inner product defined by the sp(3,R ) measure
and let V'3, denote the corresponding Hilbert space with
respect to the U(3)-boson measure. Let

KV3,—V?, (5.1)

transform an orthonormal basis for V7, into an orthonor-
mal basis for V', such that the U(3) symmetry of states is
conserved, i.e.,

K-'T'(C)K =T (C), CeU(3). (5.2)

Theorem: If « is the positive Hermitian square root of
KK7, ie.,

“=KK', k=« (5.3)

where Hermitian adjoints are defined with respect to the
U(3)-boson measure, then ¥, defined by

yX)=«x"'"'X)x, Xesp(3,R), (5.4)
is a unitary realization of sp(3,R ).

Proof: First observe that for X, Ye sp(3,R ),

(MX)\ Y)Y =« [T(X),[(Y)]k. (5.5)
Since I is a realization of sp(3,R ), it follows that

[FX),C(Y)]=r(XY]), (5.6)
and hence

[(HX)NY)] =X, Y]). (5.7

Thus y is a realization. Next observe that 7, defined by

7IX)=K ~'I'X)K, Xesp(3,R), (5.8)

2667 J. Math. Phys., Vol. 25, No. 9, September 1984

is a unitary realization, by construction, implying that
4 (Ay) = T’ (Bij)T‘
Now
F(Bij)f =2Z; (5.10)
[with respect to the U(3)-boson measure]. Therefore Eq. (5.8)
implies
IA;)=KK'z;(KK") ™' =Kz;62. (5.11)

Thus, from the definition (5.4) of ¢ and the fact that K and
henceKK * commutewithI" (C ), weobtain Eq.(2.12)fory(X ),
which is manifestly unitary.

(5.9)

V1. sp (3,7) MATRIX ELEMENTS

Matrix elements in V'3, of ¥ (x), x € U(3)-boson, are by
the coherent state isomorphism (2.4) identical to the corre-
sponding matrix elements of x in HY,, which are known.
Thus, if we determine the matrix elements of x, we can, by
Eq. (2.12), deduce the matrix elements in V' of y(X),
Xe sp(3,R ). These in turn, again by isomorphism, can be
identified with matrix elements in Hg, of X by which identifi-
cation we implicitly define a basis for Hg,. The outstanding
problem then is to determine «.

The basis (2.9) defines a decomposition of the coherent
state space into a direct sum of U(3) invariant subspaces

Vo =3 VE=3V (6.1)

where i = (np) indexes the multiplicity of U(3) unirreps o
contained in ¥ . Since the operator «, by definition, is U(3)
invariant, it follows that V¢ is « invariant. Thus the decom-
position (6.1) block-diagonalizes «. The calculation of « is
thereby reduced to a set of calculations for [«{w)}, where k(w)
is the restriction of k to V3¢

Now in the decomposition (6.1), many U(3) representa-
tions w are multiplicity free. For example, the lowest weight
state o and the second weight states (2,0,0) X o are always
multiplicity free. We shall call such states and such represen-
tations “simple.”

Theorem: If w is simple then x(w) is a multiple of the

T

identity I, on V32, i.e,,

ko) =k (). (6.2)

Proof: The proof follows immediately from Schur’s
lemma and the fact that, if w is simple, ¥ % carries an irredu-
cible U(3) representation.

Thus, when w is simple, the evaluation of x{w) reduces
to the evaluation of the single number & (w). A simple exten-
sion of this argument shows that, if @ has multiplicity n, then
k(w) is defined by an 7 X n Hermitian matrix.

The matrix elements of «(w) are easily derived starting
from the identity I'\4;) = [A,z;], with A given by Eq.
(2.14). This identity is easily proved by direct evaluation of
the commutator using the Egs. (2.3}, from which one derives,
for example,

[@V)iszu ] = 6z + 8424 (6.3)
From Eq. (5.11), one then obtains the fundamental equation
[Az;] =Kz;x 2 (6.4)
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TABLE I. £2(onw) and «*(w)/x*(0) for some U(3) representations @ con-

tained in the sp{3,R ) unirrep (20,13,10).

Index n o 02 (onw) K w)/ k(o)

1 (000 (20,13,10) 36 1

2 (2000 (22,13,10) 76} 40

30 (20,00 (21,14,10) 67} 3]

4 (2000 (20,15,10) 601 24

8,1 (22,00 (215100 1014 ( 1014 — 24210
82 (4,0,0) (22,15,10) 981 ~2210 940 )

Thus, since A is diagonal in the U(3)-boson basis (2.9), Eq.
(6.4) gives

(0'n'p'a)||K*e')zx ~*(w)||onpa)
= (2 {on'@’) — 2 {onw))on'p'v'|z| onpw), {6.5)

where the matrix elements are SU(3)-reduced matrix ele-
ments in V'3, .

It follows that, if @ and o' are both simple,

[ 172

k) _ (2 (on'w’) — 2 (onw)) ’ , (6.6)

k ()

giving immediately the expression (2.18) for the matrix
elements of ¥(4,;) = kz,x ~ ! between simple states. Hence we
derive the analytic expression (2.19) for matrix elements of
the sp{3,R ) algebra between simple states.

In general, from Eq. (2.17), we derive the recursion rela-
tion

{ioo | |joo)

= F-(/—) kgg[{) (iw) — 2 (ko')] (ko' || l0")

X (iwlja*||ke')s (jolla"||lo")], (6.7)
where

N = zk‘,(]"‘"a:'(kaki Jw) = 21‘,”4(1'},

for the matrix elements of k*(@) which are easily solved at
each weight starting from the lowest.

If we neglect the off-diagonal elements of k*(w), then Eq.
(6.5) gives the approximate expression

M;(n (iw') — 2 (lw))'/?, (6.8)

Ky (o)

and hence the approximate sp(3,R ) matrix elements of Eq.
(2.27).

The procedure is illustrated in Tables I and II which
give some matrix elements for the representation
o = (20,13,10) [i.e., the representation Ny(d4o) = 43(7,3) in
a U(1) X SU(3) classification] calculated with a hand calcula-
tor using the above expressions. The exact matrix elements
for simple states are obtained quite trivially from the known
boson matrix elements, listed in Table II. As shown in Table
I, the w = (22,15,10) states have a twofold multiplicity and
one must evaluate the expressions given by Eq. (6.7), for the
matrix elements of «*(w). The result is given in Table I and
used to calculate the exact matrix elements given in Table I1,
from the expression (2.26).

The matrix elements given in Table IT under “improved
approximation” were calculated directly using Eq. {2.27).
One confirms that they are precise for simple states and, as
expected from previous comparisons with numerically com-
puted sp(3,R ) matrix elements,?? they are accurate for the
representation in question to ~0.1%. For large (0,,0,,03),
such as occur in the application of the sp(3,R ) model to rare-
earth rotational nuclei, they are more accurate. For exam-
ple, for the representation NyAq,) = 733(82,0) used to de-
scribe rotational states in '>*Sm, the approximate analytic
expression (2.27) gave matrix elements accurate to two parts
in 10%, which is more than sufficient for most conceivable
practical applications. For smaller A, and larger &, = 30,
the results are still more accurate.

VIi. AN APPROXIMATE REALIZATION OF sp(3,/7) AND A
HOLSTEIN-PRIMAKOFF EXPANSION

A simple algorithm was given in Sec. VI for the compu-
tation of the matrix elements of the Hermitian operator «,
which appears in the expression (2.12) for the realization y of
sp(3,R ). It would be very useful to obtain an explicit realiza-
tion for k. The fact that we obtain exact analytic matrix ele-
ments for the representation o, = o, = ¢, suggests that, for
such representations, it should be possible. This is indeed the
case, as we now show. Furthermore, the fact that accurate
approximate matrix elements are given by an analytic
expression in the general case suggests a corresponding ap-
proximate realization of x, which we also find.

First observe that if we define A "-z and V-A " by Eq.

TABLE I1. Comparison of approximate (analytic) and exact sp(3,R ) matrix elements evaluated for the (20,13,10) representation by the method described in

the text.
Gl
i j {#latiln u{3)-boson improved exact
approximation approximation
2 1 1 V86/3 = 5.541 V40 = 6.3245 V40 = 6.3245
3 1 —1 — 8673 = —5.541 — 3T = —5.5678 —3l= —5.5678
4 1 1 V86/3 = 5.541 V24 = 4.8990 V24 = 4.8990
8,1 2 V5/6 V215/9 = 4.888 J125/6 = 4.5644 4.5634
8,1 3 V273 V172/9 = 4.371 J68/3 = 4.7610 4.7631
8,1 4 JiZz V4373 = 3.786 V&1/2 = 4.5277 4.5264
8,2 2 7/36 J301/54 = 2.361 JT7/18 = 2.0683 2.0704
8,3 3 — /80/63 — /68807189 — J2480/63
= —6.033 = —6.2742 — 62725
8,4 4 V15728 V215/14 = 3.919 J285/14 = 4.5119 4.5132
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(2.29) then, from Eq. (2.15) and its Hermitian adjoint, we
obtain

Azy =K262 Yy =KV (7.1)

Thus, if, as in the derivation of the approximate expres-
sion (2.27) for sp(3,R ) matrix elements, we assume that A and
x are simultaneously diagonal and hence commute, we ob-
tain

Arz, =Kz, VAT ="V (12)

If we then formally extend the definition (2.29) to half-in-
teger n, we obtain, with the approximation {4 ,«]=0,

1/2 ~ -1 1/2 1
Az =Kz, VA T=k VK,

and hence Eq. {2.28).
To define A /2, note that we may write

A=A+ A,
Ag = §tr(C)tr(zV),

Al = A hand AO'
Within a representation (0,0,,05),

(7.3)

(7.4)

Agz; = 20z;.
Thus we may equate A, with the operator 20/, where I is the
identity. Hence we define

= [1/2
A1/2=(A0_+_A1)1/2=\/% z[ ; ](20)*1(/1 llc,
k=0

(7.5)
which is meaningful whenever the series is convergent. From
the expression (2.16) for the eigenvalues of A, we deduce that
matrix elements of

A%z, and VA%,
between low weight states, are of order of magnitude
(A, + u,), where 1, and p,, are given by Eq. (2.24). Thus,
the series is well-defined for (4, + 1,)<20.

The extent to which this approximate realization satis-
fies the sp(3,R ) commutation relations is a measure of its
accuracy. As shown in the Appendix,

[V,J'A IIZ’A 1/2, zIk]

=y ([B;An]) — [1/820°1X 5 + -, (7.6)
[A ”2~Z,~j,A 1/2_2&1

= 7’( [Aij’Alk ])

— [1/820P1 (Y +2Y )+ ¥ ) + -,
where

X7 =[VpAT 2, 147, (7.7)

Y= [z;AT 24 ] AT

The commutation relations of A '/ z, and V-4 '/? with
¥ (Cy) are exactly satisfied. Since the matrix elements of

A2z, and V,;-A '/? are each of order v20, it follows that,
these approximations for (4 ;) and ¥{B;), respectively, are in
error by a factor of order [(4, + ,)/20]*. We note too
that, when o, = 0, = o5 (i.e,, 4, = 1, =0), A commutes
precisely with x and the approximation becomes exact.
Finally, to obtain the generic Holstein—Primakoff real-
ization, one must make the substitution z,-j—>a,Tj,V,.j—>a,-j in

the expressions for (X ), Xe sp(3,R ). Since the approximate
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expression (2.28) is accurate to fourth order, it clearly gener-
ates the first three terms of the expansion correctly. The first
two terms are given in Eq. (2.30). For the o, = 0, = o, repre-
sentations, Eq. (2.28) generates precisely the infinite Hol-
stein—-Primakoff expansion.

Viil. CONCLUDING REMARKS

The coherent state realization of the sp(3,R ) algebra has
proved to be remarkably powerful. However, its utility ap-
pears not to be so much in providing a Hilbert space, like
Bargmann space, in which calculations are simplified, as in
providing an intermediary step towards finding the relation-
ship between the sp(3,R ) and the simpler u(3)-boson algebras.
As a result we have been able to discover analytic expres-
sions for the sp(3,R ) matrix elements that are exact between
simple states and remarkably accurate generally. This is a
result of considerable interest which saves substantial com-
puter time in sp(3,R ) model calculations by obviating the
numerical methods used previously.?*?!

It is of interest to note that our coherent state represen-
tations are similar to, but of a different type than, those em-
ployed in the previous works on the subject.'”~'° Deenen and
Quesne,' for example, found for the special case
(0, = 0, = 03 = N /2), the realization of the sp(3,R ) algebra

Q) =y
Q(B;) =N4,; — 44, + (Aol )
Q(Cy)=(N/2)5; + (wd)

where 4, = (1 + 6,;)0/0w;. This realization was obtained,
following Barut and Girardello,'” by a change of variables

(8.1)

T

ij

N
(Ufj = Z x,‘,,-xjn) (82}

n=1

from the standard Bargmann coherent state realization’
Alj = zb ;Tn bjn —’Z‘xin'xjn .

It is sometimes called a Barut realization. One notes that the
Barut realization is evidently isomorphic to ours for the spe-
cial case (0, = 0, = 03 = N /2) in which C;—46,;N /2. How-
ever, the differences are interesting. As Deenen and Quesne
showed, their (Barut) coherent states are eigenstates of the
B; lowering operators. In contrast, our coherent states are
translates of the lowest weight state by the group action, in
accord with the definitions of Perelomov® and Onofri.'® For
the Bargmann coherent states of the Weyl algebra,’ the two
definitions are, of course, equivalent but they extend differ-
ently to more complicated groups. It seems rather remarka-
ble, though, that the two distinct definitions of coherent
states should result in such transparently isomorphic results,
even for the special case {0, = 0, = g,). It would be very
interesting therefore to see if this correspondence extends to
the generic representations and to other groups.

In conclusion, we note another interesting characteris-
tic. Whereas the coherent state theory for the noncompact
sp(3,R ) group has some complications over that for a com-
pact group, it also has some extra nice features. In particular,
the (coherent state related) boson expansions for a compact
Lie algebra must be restricted to what is sometimes called

(8.3)
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the “physical subspace.”® For example, in the bosonization
of the SO(2V) fermion pair algebra,’ one must restrict the
bosons to the image of states accessible to fermions obeying
the Pauli exclusion principle. In contrast, the generic (o5 > 3)
U(3)-boson representation spaces are isomorphic to those of
sp(3,R ). Thus they contain no spurious “nonphysical” states.
A consequence of this is that the Holstein—Primakoff real-
ization of the sp(3,R ) algebra is manifestly Hermitian where-
as in general, as observed by Dobaczewski,” the Holstein—
Primakoff realization is Hermitian only on the physical sub-
space.

Further applications of these techniques will be given in
a paper (with B. G. Wybourne and P. H. Butler) to follow.

APPENDIX: ERROR ANALYSIS

The objective is to show, by proving Eq. (7.6), that the
approximate realization (2.28) of the sp(3,R ) algebra satisfies
the sp(3,R) commutation relations up to terms of order
[, +1,)/20".

From the definition (7.5) of A /2, it follows that

VA =20 f; ( )(2 o) ", (A1)
m=0
42, =35 3 (V2 )ao) o, (a2)
n=20
where
Fi =V, AT (A3)
Gl =ATzy. (A4)

In expanding the commutator [V,-A '?,A "%z, ], terms
are encountered of the type

X' =[FMGR]. (AS)
Now, from the Jacobi identity,
[ngm’Gln) [melG(n-;—l)]
+ [[Fy "GR.A], (A6)
which by repeated use leads to the equation
X(m,n)=X[0,m+n)_+_ Z[X(mfk,n—kkfl]’Al]' (A7)
k=1
Repeated use of Eq. (A7) then leads to the expression
nof{m
penn §(7) xee .
where X ™ is defined by
X, = [X(km]»A o) X" =x0°m. (A9)
Since
1/2 172 —my (0 n)
[VyA V2GR =20 E (20) = "X ©m ),
m=20
(A10)
it follows from Eqs. (A1) and (A8) that
[Vl_j.A 1/2,G(lrI:)] — [V,J,A 1/2.G(n)]
172
ez 376
m k=1
X{(20) "Xk, (Al1)

Hence we obtain
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[VUA I/Z,A 1/2.2"(]

-t § (Y7

mn k=1
X (20) = m+ Y m b k), (A12)
Now the first term on the rhs is just I" ([ B4, ) which by
Eq. (2.12) is equal to y([ B;,4, ]}. Hence
[V;_'j'A I/Z,A 1/2.2”(]

=y([B;A4u]) + 20; g (1/2)(1/2>(k>

X (20) =R (A13)

Thus the second term on the rhs is a measure of the error in
the approximation

v (By)=V,-A 'z, Vidy)=A 12, Zik (Al4)

An order by order evaluation of this error term, in in-
verse powers of 20, reveals that the first three terms vanish
identically, which is why the approximation is so accurate.
The fourth-order correction term is given in Eq. (7.6).

The commutator [A '/?.z;,A .z, ] is evaluated in a
similar way The commutator

Yy =16%,6%] (A15)
is shown to satisfy the equation
(m,ny _ m < [ {m+n—kj
ymn=(—1) Z(k>Yk , (A16)
k=0
with Y™ defined by
Yo, =[Yya,] Y=y (A17)

Thus, in parallel with the derivation of Eq. (A13), we obtain
[A l/z'zij’A 1/2_2 ]

-3 3 -r()000)

X(20) " m Ytk (A18)

In evaluating the rhs, it is important to use the identity

[AzpAzy ] =T ([4;4]) =0, (A19)
which implies the relationship
Y 4 yW=o. (A20)

An order by order evaluation of the rhs of Eq. (A18) then
reveals that the first three terms vanish identically. The
fourth-order term is given in Eq. (7.6)

Note that for a representation of the type
(o, = o, = 0, = 0), in which the u(3) operators reduce to

vGCy) = 6,01 + (2V) (A21)

where [ is the identity, all the correction terms in the expan-
sions (A 13) and (A18) vanish and the approximations (2.28)
become exact.
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Remarks about inverse diffraction problem?®
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From the scattering data one finds the support function or the principal curvatures of the surface
of a reflecting obstacle. From either of these data the surface is effectively reconstructed.

PACS numbers: 03.80. +r

I. INTRODUCTION

Let D be a bounded domain (an obstacle) with a smooth
boundary I, and £2 = R >\ D be the exterior domain. It is
well known (see, e.g. Ref. 1) that the scattering amplitude f
for the problem

(V*+kHu=0 in I, k>0, (1)

u=0 on [, (2)

u = exp[ik (v,x)] + v, 3)

~ Mf(n,v,k) as |x| = r—oo, Z=n
r r

in the high-frequency (k— 0 ) approximation determines the
Gaussian curvature K of I".

It was shown in Ref. 1 (see also Ref. 2) that f determines
the support function a(!) of I explicitly and the parametric
equations of I" are

x =980 193 (5)

da,
Here ! = (a,,a,,@;) is a unit vector of normal to I" at the point
Sq» which is uniquely determined by v and » if I is strictly
convex. Namely, / = (n — v)/|n — v| and s, is the point at
which the expression (/,s) is stationary on I, where I"_is
the illuminated part of I". The function (/) was defined in

Ref. 2asa(/) = — max,, (/,5). The function a(/)is a homo-
geneous function of a,,a,,a, of order 1:
9 6 —a, 6
da;

one should sum over the repeated indices here and below.
The basic result of Ref. 2 gives an algorithm for a stable
calculation of I" from the knowledge of the scattering ampli-
tude f(n,v,k ) for n,v such that (n — v)/|n — v| runs through
all of the unit sphere S (e.g., forn = — vand v runs through
§2, the backscattering case) and for two values of &, k = k,,
and &, # k, such that the high-frequency asymptotic formula
for f holds*:

exp{2ik;(n,l)a(l)]
Sy =Slmvk) = 20K (s0)] 72

6j—>0 as kj—>oo. (7)

Here X (s,) is the Gaussian curvature of I" at the point r,. If
the f; are measured with the accuracy 8, i.e., | fis —f;| <8
and f; are the measurements, and if K (so)<d 2 d = const,
then

(1 +¢),

# Prepared while the author was visiting Schlumberger-Doll Research, P.
0. B. 307, Ridgefield, CT 06877.
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?i = exp[2i(n,l)all (K, — k)]

26

X[1+0(le)| + |e&]) + O(6d)].

Thus
2 )k, —ky)  fos
[€1] + |€| + 6d
+0( k) — kol (1) ) ®

The knowledge of a(/ ) with a known error allows one to
recover the surface stably using the following estimates of
the derivatives of a function a(/) known with an error

77:0( 1] + & +5d).
|ky — k| [(m,0)]
Assume that |a” |<M, where a” denotes any second deriva-
tive of a(a,a,,@;), and assume that a, is known,
la, —a| <n. Leth = (2n/M)"'? € = 2Mn. Then
|[a,la@+hb)—a,la—hb)]/2h —3Fa/db|<€=2Mny
(Ref. 3). Here b is any unit vector, da/db = (V_a,b) is the
derivative of g in the direction b. All these facts are proved in
Ref. 2 and provide a stable and effective algorithm for reco-
vering the surface from the scattering data. One should be
able to measure the phase of the scattered field in order to use
the above algorithm. This is not very easy in practice. There-
fore one can think of recovering the support function of I"
from some other data.

It is clear from (7) that the Gaussian curvature
K = K |K,, where the K; are the principal curvatures, can be
determined from the measurements of | f|°. Let us assume
that the quantity K, — K, can be measured.* (In Ref. 4 a
possibility to determine K; — K, from the measurements of
the scattered field was reported for electromagnetic scatter-
ing from a metallic body. It is not clear if K; — K, can be
found from the measurements of the scattered field in acous-
tic problems.) Then the quantity # = K ' + K ;” 'isknown
as a function of the unit normal / = (@,,@,,a,) to I'". From
this data the support function of I” can be recovered and then
the parametric equation of I"is given by (5). Notice, that if
the origin of the coordinate system is placed inside the con-
vex obstacle D, thena(/ ) = max_,(/,f), and (5) takes the form

x =% 1g<a. (5)
da;
l. RECOVERING THE SURFACE FROM h =K ' + K; !

In this section a construction of I" from 4 is given. A
similar construction can be found in the literature.’ Since it
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was not used in the inverse scattering problem, the construc-
tion is described in sufficient detail for convenience of the
reader. It is worth mentioning that the problems of recover-
ing a surface from its Gaussian curvature K, K, or its mean
curvature (K, + K,)/2 were studied in the literature exten-
sively. Both problems lead to nonlinear elliptic equations
which cannot be solved explicitly. In contrast, the problem
we are discussing here will lead to the Laplace equation
which is effectively solvable:

Ja &a & a

=V2ala,,a,a;) = h. (9)
> | da2 | da? v
To derive (9) one takes the Rodriguez formula
dx, — Rda; =0, 1<j<3, (10)

in which x = x(a,,a,,a;) is the radius vector of a point of the
surface I, and the unit vector / = (a,,a,,a;) serves as a pa-
rameter. There is a 1-1 correspondence between the param-
eter | = |a,,@,,a,) and the parameter (0,4 )S . Namely, / is
determined by the point (4,4 )eS ? and determines this point.
Since /is also the outer unit normal to I', we write da; in (10)
instead of — dN; as in Ref. 5, where N is the interior unit
normal to I'. Finally, R in (10) is the radius of the curvature
of the normal cut of I in the principal direction
{(da,,da,,da;). From (5') and (10) it follows that

2
0= da da; — Rda,;
da;da;
2
= ( d’a —R 6j,-)da,,
da;da;
1) I =j1
5, = [ 11
’ 0, i#). (1)
Since the vector (da,,da,,da;) 50 one concludes from (11)
that
&a
det — RS, )=0. 12
( a; da; ! ) 12

But det d°a/da; da, = 0. Indeed, differentiate (6) in a, to
obtain

& a da da &a
———a+ —8,= — or =
da; da, da; da, da; da;

(13)
Since (a,,a,,a;) #0 one concludes from (13) that
2
det—92 __o (14)
da; da;

From (14 it follows that Eq. (12) has a root R = 0. Its two
other roots are the principal radii R; = K ;~ ', where K|, are
the principal curvatures. Since the body is assumed to be
convex, R; > 0. The trace of the matrix d°a/de; da, is equal
to R, 4+ R, + 0, where R, R,, 0 are the roots of (12). Since
R, + R,==h one obtains Eq. (9).

It remains to solve this equation. Let us expand
h = h(a,,a,a;) = h (6,4) in spherical harmonics:

h=2 hpY,.(00) (15)

n>0
where the Y, are the normalized in L *(S ?) spherical har-

monics,
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Y,, = (Mﬁ.ﬂ) P, . (cos 6 )e™,
4m(n + m)!
—n<m<h,
P, ,.(x) are associated Legendre functions, and the 4, are
the Fourier coefficients of 4,

h =f h(6.4)Y,, do, do=sin6dods. (16
SZ

The function a(a ,a,,as) as a homogeneous function of order
1 can be expanded in the series (4 = a(ra,,ra,,ra;)
= ra(al:aba?,))‘
A=ry 4,,Y,.,, {17)
n>0
where 7> 0, and the function (17) is homogeneous of order 1.
The point {r,0,¢ } corresponds to (ra,ra,,ra;).

Let us consider (#,6,¢ ) as spherical coordinates and
(¥1.2.p;) as the corresponding Cartesian coordinates. Then
r=(2 ),

2 2 2
VirYnm = (_8_ + _(_9_ + f?__) rYnm
W F
_n=lint+2)

> (18)
”
and from (17) and (18) it follows that
Vid= — z A, n—=1n+2) Yo (19)
n>0 r

Substitute (19) and (15)in (9), take = 1, and equate the coef-
ficients in front of Y, to obtain

Ay = —h,,/(n—10n4+2), n#tl {20)
A necessary condition for a function % (6,4 ) to be equal to
R, + R,, where R ,R, are the principal radii of a closed sur-
face, is the equation

h,. =0, m=0+1 (21)
This will be proved shortly. Assuming (21), one obtains an

effective formula for the support function from (17) with
r=1,

s hnm
al)= — ,go m Y, .0.4) (22)
n#1

Here /is the unit vector corresponding to the point (6,4 JS 2,
and the 4, were defined in (16).

It remains to check (21). Let do be the element of the
surface area of I', do = R, ds, R, ds,, where ds, ds, = dw is
the element of the area of S %,[R; ds, |, j = 1,2, are the ele-
ments of the length along the lines of principal curvatures on
I', and ds, ds, is the inner product of two vectors. Consider a
family I', of parallel surfaces (for which the normals are the
same as for I'y = I"). Then

do, = (R, + 2)ds,(R, + 2)ds,

=do +z(R, + R,)dow + 2 dw. (23)

From the Gauss formula it follows that
f N, do, =0, (24)
rZ

where &, is the jth component of the outer unit normal ¥ to
I',,0 <z <z, z is arbitrary, and z, small, so that one can
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assume that N does not depend on z. Substitute (23)in (24) to
obtain

f h(I)N, do =f (R, + RN, do =0, 1<j<3.(25)
52 s?

But N, = /; are three linearly independent vectors in the
space spanned by Y,,,, m = 0, + 1. Therefore (25) is equiva-
lent to (21) because A = R, + R, and h,,, is defined in (16).
This completes the proof.

Example. If I is a sphere, then R, = R, = R = const,
h,,. =0 for n > 0. Therefore, 4,,, =0 forn>0,

a(l) = A,Y,, Y, = 1/ /4, by formula (20), 4, = ho/2,
ho = 2R J4m. Thus a(/) = R and one recovers I" from
h = 2R = const.

In the above construction it is not guaranteed that the
support function a(/ ) found from the given function 4 (), sa-
tisfying the necessary conditions (21), will correspond to a
convex body D. In Ref. 6 a necessary and sufficient condition
on# forthe correspondinga(/ ) to be the support function of a
convex body is given.

The main result from Ref. 6 for the three-dimensional
case says: let 4 (/) be a continuously differentiable function of
the outer unit normal/on theunitsphereS 2. For # (I )tobethe
sum of the principal radii of curvature of a convex surface I
at the point at which the outer unit normal to I"is /, it is
necessary and sufficient that the condition (21) and the fol-
lowing condition (26) hold:

f GENVEDT) 4o, (26)
s 1—(,]")

forall/',l "eS * for which (I',] ) = 0 with strict inequality in
(26) for some choices of /' and / ”. Here (/,/ ") is the inner
product, and V4 (/) is to be calculated as follows: define 4 (/)
for all /eR * by the rule

h(l) = |Tl|h(i), 1= Ja? T + a2,

1]

[ = (aayas), (27)
calculate VA (), and then set |/ | = 1.

The reason for extending 4 as a positively homogeneous
function of order — 1is thata(/)is homogeneous of degree 1,
V2a is homogeneous of degree — 1, and thus Eq. (9) holds for
all (@,,a,,a;)eR *.

Iil. ADDITIONAL GEOMETRICAL CONSIDERATIONS

Let x(/)bea vector function on S . Itis called the normal
representation of a convex nondegenerate body D with the
surface I"if x{/ ) is that point of I"at which the outer normal to
I'is . If I admits a tangent plane at any point then x(/) is
defined onallof S 2. Letusextend x(/ ) from.S 2to R by setting
x{u) = x{u/|u|), where ueR 3,|u| = (u? + u? + u3)''?, u#0.
The value x(0) does not play any role. The support function
of Iis (I,x(!)) = a(!) provided that the origin is inside D. One
has

da ,
X = —, I=(anenas), 153,
da;
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da ax;,  Ox;
= -2, (28)
da;
the matrix a;=d"a/da,;da; is semi-positive-definite. Since
a(Aly= Aa(l},A >0, we define a(0) = 0.
Differentiate Eq. (9) to obtain

Vix;(u) = ﬁ, (29)
Jda;
where h (u) = (1/|u))h (u/|u|) [see (27)}.

In Ref. 6 the following proposition is proved: a continu-
ously differentiable vector function x(«) is a normal repre-
sentation of a convex I if and only if dx; (u)/du; is a semi-
positive-definite symmetric matrix not identically zero.

The necessity follows from (28), and a(/ } = (/,x(/)) is the
support function of a convex I". The sufficiency also follows
from (28): construct a(/) = (/,x(/)), Eq. (28) shows that the
Hessian g;; is a semi-positive-definite matrix. Since x(u) is
homogeneous of order 0, one has (u,dx(u)/du;) = 0, 1<j<3.
Therefore a(u) is convex and, since a(/ ) is convex and, since
a(l) is the support function of I', the surface I” is convex.

This condition can be formulated in terms of the coeffi-
cients 4, [see (15)] as semi-positive-definiteness of the ma-
trix

da; da, B 51:

hnm

gb (n—1){n +2)
n#1

Sy 04
x rYo (6, ))
(ayiayj

where a,;>0 means that a;1,¢,>0, V¢, and y; are
the same as in formula (18).

Noteadded in proof: In Ref. 10it was shown thata(/ }can
be recovered stably from the knowledge of the scattering
amplitude f(n,,K,) at one high frequency and n,veS % such
that / = (n — v)/|n — v| runs through all of S >. In Ref. 11 a
uniqueness theorem for inverse diffraction problems with

two-dimensional data is given.

a; = —

>0, V(6,¢)eS?,

r=1
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The integration of the Einstein equations for cylindrically symmetric solitary waves is reduced to
a single quadrature when the “seed” solution is diagonal. Also in this case, explicit formulas that
show the solitary wave character of the one- and two-soliton solutions are studied. A particular
case of n-soliton solution is exhibited. Two theorems that show how to construct new solutions

from known ones are presented.

PACS numbers: 04.20.Jb

|. INTRODUCTION

One of the most powerful methods used to generate new
cylindrically symmetric solutions to the Einstein equations
from a given solution (seed solution) is the inverse scattering
method (ISM).’~® The new solutions generated by this meth-
od present similar properties to those of the solitary waves
studied in fluid dynamics and in classical field theory.* In the
actual application of the ISM, one finds two main difficul-
ties. First, the ISM requires the explicit integration of an
overdetermined system of linear partial differential equa-
tions. To find integrals that can be expressed in a closed form
for the above-mentioned system of equations is not an easy
task.> Second, the algebraic complexity of the solutions sel-
dom allows the display of their main features. The purpose of
this paper is to study the overcoming of the above-mentioned
difficulties in the application of the Belinsky—Zakharov ISM
for the special class of diagonal seed solutions.

The vacuum Einstein equations for the cylindrically
symmetric metric

ds’ = (e*/V't)dt? — dr*) — tf (dO + h dz)* — (t /f)dZ?,
(1.1)
where f, 4, and 2 are functions of ¢ and r only, split in two
groups.® The first group can be written as

[t(-f:f/f_fzhh,l)],l - [t(f:r/f_f2hh,r)],r - O’(lza)
(lfzh,t ),r - (tfzh,r),r =0, (12b)
where ( ),=0, and { ),=d,, and the second as,

zz=fr{[f—2(f?, +12) +S2(hE +h2)]ar

+2f S, +f7h b )} (1.3)
The existence of 2 is guaranteed by Eqgs. (1.2). By a diagonal
solution we mean a solution to (1.2) with A = 0.

In Sec. 11, we present a summary of the ISM and the
explicit integration of (1.3) when fand 4 are n-soliton solu-
tions to (1.2). In Sec. III, we study the “Schrédinger equa-
tions” for the wave function #,, and in the diagonal case we
reduce the integration of these equations along the poles’
trajectories to a single quadrature. Also in this section we
give examples of particular functions ¢, and we present a
superposition “principle” that allows the explicit computa-
tion of new functions ¢, from known ones.

In Secs. IV and V, we study the one- and two-soliton
solutions, respectively. In particular we give compact for-
mulas that reveal the soliton character of each solution in an
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explicit way. In Sec. VI, we show how to construct #-soliton
solutions. Finally in Sec. VII, we discuss some of the results.

il. THE INVERSE SCATTERING METHOD

The starting point of the ISM used to solve Eqgs. (1.2) is
the fact that those equations can be written as the integrabi-
lity condition for an overdetermined system of differential
equations.' Equations (1.2) can be written in a completely
equivalent form as the matrix equation’

vy —ltv,y"), =0, 2.1
with
S s
=t . 2.2
I PRV 22
Two important properties of the matrix y are
dety=1t% y=9" (2.3)
The integrability condition for the system of equations,
tU+ AV
D= FENCEY ¥, (2.4a)
tV+ AU
D.y= FERVEL ¥, (2.4b)
where
2t
D, =a, -+ tz—_/l—zai, (2.53.)
u 2
D =4, + mai, (2.5b)
U= t?’,ty_ l: V= 17’,r7’_ 1’ (26)

is just the same Eq. (2.1). ¢ is a 2 X 2 complex matrix function
of ¢, r, and the spectral parameter A. Putting A = 0O in (2.4),
we have ¥ (A = 0) = .

Solutions with pure soliton character are associated
with solutions of Egs. (2.4) of the form

¥ =x¥o (2.7)

n R X

y=1+ kgl P (2.8)
where ,is a solution to Eqs. (2.4) for a given ¥, say ¥,,. R, are
complex matrix functions of ¢ and r only, and g, are scalar
complex functions of # and r only. The pure soliton character
of the solution is associated with the particular form of y
given by (2.8), i.e., with the existence of simple poles in the
matrix y. The number of poles will tell us the number of
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solitons appearing in the solution. Note that by letting A = 0
in (2.7), we get

¥=Wli-ol7o (2.9)
A condition that guarantees the fact that y = y” is

y=x @A)y (A). (2.10)
From (2.1)—2.10) we find'
Voo = (s — 3, L NE 211)
ki=1 Hiky
Fk, _ m'ak )(Vo)ab ”;‘lé) (2‘ 12)
Hipey — 1
NP =mE¥o)sas (2.13)
il = M, .14
M = o5 )y (2.15)
fi =, —r+ [la, — P —12]"2 (2.16)

The sum convention on the indices @ and b is assumed. g and
b take the values 1 and 2. m{};) and a, are sets of arbitrary
complex constants. Note that the solution (2.11) is complete-
ly determined by %,, ¥, and these sets of constants. Regard-
less of the fact that the matrix whose elements are (2.11) is
symmetric, in general, it is not possible to cast it in the form
(2.2), since the matrix (2.2) has determinant equal to 7. To
remedy this problem, we can define a new matrix

¥™ = ty/(det y)''? (2.17)
that satisfies the two conditions (2.3). Taking the trace of
(2.1), one can prove that the new ™ is also a solution to (2.1)
whenever y is a solution. The determinant of (2.11) can be
explicitly computed:

dety, =" ] ui * det 7, (2.18)

k=1
As in the elliptic case, one can compute the integral
(1.3). For the solution (2.11) we find

2:h= 0+ln[t —n’/2<H‘uz+l)

k=1

n

x I (p,-—pk)—zdetr] +InC,,  (2.19)
ki=1
k>1

where C,, is an arbitrary constant and the factor

H @ — ) ™?
ki=1
k>1
should be set equal to 1 for » = 1. The method that we use to
compute {2.19) is essentially the same method employed in

the elliptic case.®

lil. THE FUNCTION ¢,

The function ¥, obeys the differential equations (2.4)
with ¥ replaced by 7,, i.e.,

24t

tUy + AV,
(at + 7‘_7354)¢0= Dotz%

o (3.1a)
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242 tVy + AU,
(8, + tz—_ﬁo",l)i/lo = ﬁ Yo, (3.1b)
where Uy=t(y,),¥,~ ' and ¥, =1(¥,),%,~ . Furthermore,
¥, must satisfy the initial condition

Yola-0 = Yo- (3.2)
Equations (3.1) can be written as

(9, — A9, )0 = Voibo, (3.3a)

(13, — A3, + 243, ¢y = Uyt (3.3b)

In this section we study the system of equations (3.3)
with the boundary condition (3.2} when y,, is a diagonal ma-
trix, i.e., (¥o)12 = (Vo)2; = 0. If 7, is diagonal, one may as-
sume that 3, is also a diagonal matrix with these assump-
tions; (3.3) and (3.2) yield

(td, — Ad,)In det ¢, = 0, (3.4a)

(td, —Ad, + 248, )Indet ¥, =2, {3.4b)

Indet |, .o =21Inz (3.5)
In finding Egs. (3.4} we have made use of the identities

TrU,=2, TrV,=0. (3.6)
A solution to Egs. (3.4) with the condition (3.5) is

det ¢y =1+ A%+ 2rA. 3.7)

A more general solution to (3.4) can be obtained adding ¢4 to
the rhs of (3.7), where c is a constant. We have omitted such a
term because in the final results it will only introduce a rede-
finition of arbitrary constants. Since, for the diagonal case

det ¥y = (¥o)11 (¥o)22, We have

(ohy = [(% + A7 + 274 )/ (o)1) (3.8)

It is convenient to introduce the notation

e’ =(yon/t, (3.9)

A=+ 2Ar + A7 (Yo)1- (3.10)
Thus,

(o) = (67 + 24r +4%)"24, (3.11a)

(Yoo = (27 4+ 24r+ 27124 71, (3.11b)
For the diagonal case, Egs. (1.2) and (3.9) tell us that

¢y +d,/t—¢,=0 (3.12)

The solution of the Einstein equations for the diagonal case
are known as Einstein—Rosen waves.® From (3.2)+(3.4), (3.9)
and (3.10) we get

(13, —Ad, + 243, )InA =14 ,, (3.13a)
(19, —Ad,)InA =14 ,, (3.13b)
nA|,_o =9 (3.13¢)

The integrability condition of the system of equations (3.13)
is just the cylindrical wave equation (3.12).

The ISM requires the explicit integration of Egs. (3.13).
The function A is known for the following particular solu-
tions to (3.12):

é=Int¢, (3.14a)
d=r, (3.15a)
p=11247, (3.16a)
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(3.17a)
(3.18a)

$=In[ —r+ (-1

¢ =In[} tan(k¢)],
where

t = (a%/2k *)sin(2k7)sin(2kE ),

r= — (a*/2k *)cos(2kt)cos(2kE ),
a and k are constants. The corresponding functions A are

A=+ 2r+ 433 (3.14b)
A=exp(r+i), (3.15b)
A=exp[y*+(r+4A)], (3.16b)
A= —r4 [P -1V -4, (3.17b)

A= [a" sin?(2k7)sin®(k€ ) — a’k *A cos(2kE) _1_}1/ 2
- kOt +24r + 43 k2]
(3.18b)
The solutions (3.14), (3.17), and (3.18) are implicit in Refs. 1
and 10. Solutions (3.15) and (3.16) are the hyperbolic version
of two solutions implicit in Ref. 5. The solution (3.18) is par-
ticularly interesting since the case k = 1 represents a closed
Friedman-Robertson—Walker model and the case k =/ an
open one. Since Eq. (3.12) as well as Eqgs. (3.13) are invariant
under a translation in the variable  we can always introduce
a constant in the solutions (3.14a), (3.14b) etc., letting
r—r+4c.
From the particular form of Egs. (3.13) it is easy to show
the following theorems:
Let ¢, and @, be solutions to (3.12) and A ;) and A,
their corresponding solutions to (3.13). Then, the A associat-
ed to

¢ =ad,, + bdy, (3.19)
where g and b are arbitrary constants is
A=A{AY,. (3.20)

An important corollary is obtained by putting 5 = 0 in
(3.19) and (3.20), i.e., the A associated to ¢ = ad;, is A ;).

Let A be the solution to (3.13) corresponding to a¢ solu-
tion to (3.12). The A ’s associated to the new solutions ¢, and
@, defined by

Pr =3l (6. + iro) + & (t,r — irg)], (3.21)
¢ = (1720 (t,r + irg) — & (t,r — irg)], (3.22)
where 7, is arbitrary constant, are
Ag = [A(tLr + irgA A (t,r — irgd )], (3.23)
At +irgd )]V
T [A (t,t — irg A ) ] ' (3-24)
For areal 4,
Ag = |A (tr +irgA)], (3.25)
A, = exp arctan Im A (&,r + irt) (3.26)

Re A (t,r + irg,A) '

The “complex translational method” presented here
can be used to obtain exact perturbations to the Friedman—
Robertson~Walker models and their corresponding soli-
tonic solutions. Work along these lines will be soon reported.

In the final formulas (2.11)—(2.15) the matrix ¢, appears
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only in the form ¢, _ ., . Thus, to construct the solution
(2.11) we only need,

Ay=A|,_,. (3.27)
The equations that give the poles’ trajectories (2.16) are'
2u,t
fy = ——— (3.28)
I
2k
By = ———. (3.28b)
17— pg

From (3.28) and the equations that are obtained by doing
A =pu, in (3.13a) and (3.13b) we get

az lnAk = (t /z/uk)(,uk,t¢,t +,u'k,r¢,r)9 (329&)
3, Ay = (0 /2 px, . + bar ). (3.29)
Thus,
t
10 Ae = [ 5 U + e, b
244
+ (i, @ + BieP )] (3.30)

Using (3.28), one can prove that (3.30) is consistent with
(3.13c). The existence of (3.30) is guaranteed by Eq. (3.12} and
the fact that In u, is also a solution of (3.12). In other words,
the overdetermined system of Egs. (3.1) for diagonal matri-
ces U, V,, and 9, is completely determined along the poles’
trajectories. Thus, in principle, fo any solution of (3.12) we
can associate a n-soliton solution (2.11). Finally, we want to
point out that the application of the closely related method
for Bécklund transformations (BT) in the case of diagonal
seed solutions also reduces to the finding of a single func-
tion.''2

IV. ONE-SOLITON SOLUTIONS

One-soliton solutions are defined’ as those solutions ob-
tained using the ISM with a “scattering matrix” y with one
simple real pole i,. In the diagonal case, these solutions can
be written in a simple form. From (2.11}—(2.19), (3.11), and
(3.27) we get

(m,Pefu ™A 72 + (mot ~le~*uA}

h —
yfl (m])2e¢A 1_2 -+ (m2)29_¢A % (7,0)11’
(4.1a)
4 mymyt (u/t —t/u)

- ’ 4.1b
& (m,P2e?A 72 + (myPe ~ %A, (4.16)
vin = (m)V et 7'A T2+ (myPu e %A} (7o)

22 (m1)2e¢A 1—2 + (mz)ze_¢Al Yol22s
(4.1c)
th = zo +1In [t 1/2[(m1)2e¢A 1_2 + (m2)23_¢/1 % ] ]
[a; — r? — 2]

+InC, (4.2)

where we have set m,=m!!) and u=u,. The constants m,
are real in this case. Equations (4.1)—{4.2) can be cast in a
more appealing form by defining the new variables

x=¢—-2InA, (4.3a)
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p=¢—In(pAiN), (4.3b)
g=¢—In(tA%/u), {4.3¢)
y=q—p, (4.3d)
and the new constants
7 =mm,/\mm,|, (4.4a)
2 2
tanh 6 = (M) — (o) 4.4b
(m)? + (m,) ( )
From (4.1}-(4.6) we get
» _ cosh{p + 6)
4t —cosh(x n 5)‘ (Yol11s (4.5a)
» _ _ _mtsinhy
i cosh(x + &)’ (4.50)
» _ cosh(g + &)
Ve = —cosh(x n 5)_ (Volz2s (4.5¢)
I =253y+In[t "2 cosh(x + 8)/sinh y] + In C,,
(4.6)

where we have denoted the “renormalized” integration con-
stant by the same symbol used in (4.2), a practice that we
shall follow in this paper. Note that the structure of the solu-
tion does not depend on the seed solution’s ¥, particular
form, as long as (¥5),2 = (¥o)21 = 0. The soliton character of
the solution is given by the appearance of the function
cosh(x + &) in the denominator of the rhs of (4.5). Particular
cases of one-soliton solutions are studied in some detail in
Refs. 1 and 10.

V. TWO-SOLITON SOLUTIONS

Two-soliton solutions are defined' as those solutions
obtained using the ISM with a “scattering matrix” y with
two simple poles. In this case the poles are either real or
complex conjugate. From (2.11)2.19), (3.11), (3.27), and
(Yo)12 = (¥0)21 = 0, we find after some algebra

— i), —t?)
23120)
pal 7 — 2 )mllm) T, ~p ) ~ 2 mEm T,

t
= (#2

[t (pe — py)S 12 + —13)S,]? ’
(H2 — )8 17 + [(peey — £3)S5] (5.1b)
s —p)@i 1%+ [ pap, — 30,12
7;;:: [ 2 1 1 2 2 , 5.1C
(2 — 08,07+ [ paas — 75,7 70 1)
3y =3 —In[(p} — ) ul —1?
Xty — tz)z(l/#l — /1 +25 +1n G (5.2)
where
4
Sympim — & mijmy 4152 (5.3
1412
A, A,
S,=milmy =% — miim =L, (5.4)
01 02 Al 02 01 A2
]
P=mim@) — ¢
T () PAA,
+m m(z (/‘1/12) 1A2’ (5.5)

te®
2\/— m 2 ]\/— (56)
l‘/lu_l 2\[_

(U
Py=my, 02

Ty=(mZe**/A,)? + (M3 A,/ e*"?)?, (5.7)
Ty=(ml]e*? /A )? + (mlA,/e* %2, (5.8)
+mmmﬁi&%£?f, (59)

O, =miim 2\/_1 il 2 M, (5.10)

A A
=In {[¢(p, — )8, 1* + [, — 135,17} (5.11)

The fact that the poles i, and u, are either real or complex
conjugate can be used to simplify the previous formulas. For

t(p, — )P 12 + —t3)P,]?
= [[t((':: _'le))si}z n RZﬁz — tZ;Sﬂz (Yohus real 1, and u, and real constants m'%) such that
(5.1a) mm) m@mZ >0, (5.12)
_
we find
y _ [2(p2 —pi)cosh(p, +8,)1% + [(#y, —t%)sinh(p, + 6,)1° 5.13
= > 2 : > (Vo (5.13a)
[ (2 — py)coshix; + 8,)]° + [(£* — ppo)sinhix; + 6,)]
Vo = (ot )ty — t2) Tty 5 — t°)cosh( py + €) + qapta p7 — t*)cosh(p, + €,) (5.13b)
12 — . ’ .
24t [£( e, — pi)cosh(x; + 8))1% + [( @, — 2 ¥)sinh(x; + 8,)]
Jon = 10y — piJeoshiqy + 8)1° + [(pys, — 17)sinhl g, + 817\ (5.13¢)
(£(py — py)cosh(x, + 8,))% + [(¢? — pu,)sinh{x, + 8)1°
35 =In{[#(p; — pi)coshix, + 8,)]1° + [y, — t*)sinh(x, + 6,)17}, (5.14)
where
xX=¢ — In({A4,4,), (5.15)
x,=In (4,/4,), (5.16)
pr=¢ —In [A Ay ) /1], (5.17)
pr=In[Anjur/A W], (5.18)
P. S. Letelier 2678
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§,=2x, —p,, §:=2x,—p,, (5.19)

VI=X + X3 V=X — Xy, (5.20)
and
1) ,,,02 ), (2
tanh §,= —o—0 2% (5:21)
myi Mgy -+ Moz Mg
1),,,(2 %) (1
i m — mm) -
tanh §,= @ T (5-22)
mgyimg; + mgi mg;
()2 1)y2
my))* — (mg3)
tanh €= ET—(T]—Z— 5 (5.23)
(mo] )* + (mg;)
2))2 @42
myi )" — (mg;)
tanh €= iTz——Tz— y (5.24)
(mgi )" + (mg3)
1) 4,01 2),, (2
_ mgmly i) <25
M=ET g m T T e (5-25)
[moi mos | |mioi m;
In the complementary case of Eq. (5.12), i.e.,
mi mym$ mG) <0, (5.26)

we find that the relations (5.13a), (5.13¢), (5.14), (5.21), and (5.22) keep the same form, but changing the hyperbolic functions by
their respective cofunctions. The relations (5.15)—(5.20} and (5.23)—(5.25) remain the same. The component yi7, now reads
Y ey — ) (s, — 17) Nuiei( 3 — t2)cosh(y, + €,) + o 17 — t?)cosh( y; + €,) (5.27)
N 2upts [# (2, — i)sinhlx, +8,)1% + [(pyer — )coshix, + 8,))°
In the case that 12, and i, are complex conjugates we set

s=py, pr =, (5.28)

A(p=A,, A(p*) =4, (5.29)
To end up with a real metric we need

my=mg], m}=mg, (5.30)

— 1 2
my=m{l, m}=mg. (5.31)

From (5.1)~(5.11) we find

n _ (2t |u|siny, cosh(p +8,)1% + [(|u|* — t*sin(w, + 8,)]? 5.32
Yfl [2t I/L'Siny2 COSh(x +5l)]2 + [(lﬂl _ tz)sin(a)3 +62)]2 (7/0)11’ ( . a)
h 2 42 (l]? — t)cos y, sin y, sinhix 4 &,) + (|u|* + £ %)sin y, cos y, cosh(x + &,)
= 2 i e alsin, coshia + 817 + (R — snfey + 8017 O
4 2 2 AV 2
yon . L2t |plsiny, cosh(g + 891" + [{lu[” — ¢ )sinw, +6,)1° ) (5.32¢)

[2¢ |ue[sin y, cosh(x + 6,)]% + [(Jju|* — ¢ *)sin(w; + 8,)]°
27 =3, —2In[|p? — 1?|(|u|* — £ 3sin( p,)/|u|] + In{[2¢ |u|sin y, cosh(x + &,)]

+ [(lef* — ¢ )sinjw; + 8,)1°} + In C,, (5.33)
M
where Im,|* — |m,)?

x=¢—2In|A(u), (5.34) tanh §, = T (5.42)

=¢ — In(|u| |4 (u)*/1), 5.35
p=¢—1In(ly|| (A:)l ) (5.35) 5, = arg m¥m,. (5,43

g=¢—In{t|A{p)"/ ) (5.36)
w,=2arg A +argp, (5.37) As in the one-soliton case the structure of the two-soli-

ton solution does not depend on the seed solution’s y,, parti-
cular form, as long as (¥,);, = (¥o)2; = O. In the case of real
w3 = 4§ (0, + @,), (5.39) poles, the two-soliton character of the solution can be per-

ceived by noticing the special form of the denominator that

w,=2arg A — arg u, (5.38)

=L@ +ay)+ 6, (5.40) . .
— 1 541 appears in each component of ¥**. But, for complex conju-
V2= jloy — @), (5-41) gated poles, the two-soliton character of ™ given by (5.32) is
and not clear. Even though the localized character of the solu-
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tion is insured by the presence of the function cosh?(x + 8,)
in the denominator of each component of 7™, the appear-
ance of two “bumps” is not as clear as in the case of real
poles. The case of complex conjugate poles looks as if the two
bumps were “mixed” forming a “bound state.” Of course the
actual form of the functions 7% will depend heavily on the
special form of (y,),s, or to be more precise on the special
form of the functions ¢ and on its functionally related func-
tion A. The study of a special case of two-soliton solutions
can be found in Ref. 13.

Letting 2, =y, in (5.1)~(5.11) we find that ™ =y,
and 3 7" = 3,,, i.e., the two poles cancel out and we end up
with the original seed solution ¥,. This result can be easily
proved for a nondiagonal ¥, using the general formalism of
Ref. 1. In the method of BT we have the exact opposite be-
havior of the poles, i.e., the coincidence of poles can be used
to generate new solutions.'*

VL. n-SOLITON SOLUTIONS

In this section we study how to construct a particular n-
soliton solution to the Einstein equation using as a seed solu-
tion a diagonal y,,. First, let us consider the particular one-
soliton solution obtained by putting eitherm, =0orm, =0
in (4.1),

Yir = (/1) Yol (6.1)

v =0, ¥ =1t/v, (6.2)
where 6, = + 1. Slmllarly letting either mY)) = m@g =0,
ml) =m@ =0,mY) =m3 =0o0r mll) =ml} =0in(5.1)
we get

?’P1 = (p/t) (/1) Vo (6.3)

yt# and y2; are given by (6.2) and €, and ¢, are constants that
can take the values 4+ 1. Moreover, the two-soliton solution
{6.3) can also be obtained from the one-soliton solution by
considering the seed solution ¥, as a one-soliton of the same
form {6.1), i.e., taking

(Vo)1 = (p2/8%(¥5 )11 (6.4)

in (6.1), where 7, is a new seed solution. This procedure can
be repeated n times to give

7t =| 11 (%) oo

=1
v and 27 are obtained as in Eq. (6.1b).

The function 3 2% can be found either using Eq. (2.19) or
by direct integration of Eq. (1.3). We shall use the second
method in this case because it is simpler. From (6.5) and {3.9)
we get

é, = 1n1261+ 26,1n,u,

=1
From Eq. (1.3} and (3.30) after a direct, but rather long, com-
putation we get15 16

(6.5)

(6.6)

2
= ¢261+226,1n/1,+ ilnt(z )
iI=1 I=1 2 I=1
B
— 2 €€, ln,u,+zezln -
Lk=1 , —1t
+2 2 €6 n(y;, — )+ InC,. (6.7)
I>k=1
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The function ¢, given by (6.6) with ¢, arbitrary con-
stants is also a solution to (3.12). In computing (6.7) we did
not assume any particular value of ¢,. Then (6.7) gives us the
corresponding 2* for the function (6.6) with arbitrary con-
stants €,. Although the solution (6.6) with arbitrary ¢, is a
solution to the Einstein equations, we cannot say that this
new solution is an n-soliton solution since the soliton charac-
ter is given by the existence of simple poles in the “scatter-
ing” matrix y and for simple poles we have e, = + 1.

Let us consider a simple particular case of a seed solu-
tion,

p=a,Int+afr—r)+as[§t>+(r—r)], (68

where a,, a,, a,, r,, and r, are arbitrary constants. The con-
struction of the particular n-soliton associated to this parti-
cular seed solution requires the actual computation of I,
and A, only. From Eq. (1.3) we find

20= %a% Inz+ %(a% +2a,8,)t* + a,ayr + @ yar — rof
+ ayayr — r)t? +jaitt + ajt}r — ). (6.9)

To obtain A; we use the superposition “principle” presented
in Sec. IIL. First, we have that associated to each

é,=Iny, (6.10a)

dy=r—ry, {6.11a)

$3=4t"+(r—r), (6.12a)
we have the corresponding A functions

Ay =12+ 2Ar + A3 {6.10b)

Ay =explr—r +4), (6.11b)

Ag, =exp[5t2+(r—r2+%/l)2]. (6.12b)
From the superposition theorem we have

Ay =A% (pu)AG{u)A ?5)(.“1)~ (6.13)
From (6.10b}—{6.12b), (6.13), and (2.16) we get

A, = (20,1, exp {‘12(" —r+iw)

+a[§7+r—r+3pm)’ 1} (6.14)

Also, this particular #-soliton solution can be used as a new
seed solution to construct a new solution, i.e., we can use 2
given by (6.7) as 3, and the function A, associated to the full
solution (6.6) can be found again using the superposition
principle, and so on.

Vil. DISCUSSION

The main results of this paper are that the finding of the
soliton solutions associated with Einstein—-Rosen waves is
reduced to a single quadrature Eq. (3.30) (we consider the
quadrature that defines 2, as known) and that the one- and
two-soliton solutions admit explicit “canonical” forms that
exhibit the soliton character in a simple way.

The timelike and spacelike character of the coordinates
t and r can be inverted by adding i to the integration con-
stant that appears in X /. Depending on the timelike or spa-
celike character of ¢, the soliton solutions can be interpreted
as an exact finite perturbation of either a cosmological model
or a cylindrical wave.

A similar discussion to the one presented here can be
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done for the case of solitons associated with axially symmet-
ric stationary solutions to the Einstein equations® and with
solutions to self-dual SU(2) gauge fields on Euclidean
space.'” Work along these lines will be soon reported.

'V. A. Belinsky and V. E. Zakharov, Zh. Eksp. Teor. Fiz. 75, 1955 (1978)
[Sov. Phys. JETP 48, 985 (1978)].

21. Hauser and F. J. Ernst, J. Math. Phys. 21, 1126 (1980).

3The relation between Belinsky-Zakharov and Hauser Ernst ISM can be
found in C. M. Cosgrove, J. Math. Phys. 23, 615 (1982).

*See for instance, V. G. Makhankov, Phys. Rep. 35, 1 (1978).

5P. S. Letelier, Phys. Rev. D 26, 3728 (1982).

SSee for instance, P. S. Letelier, Phys. Rev. D 26, 2623 (1982); and refer-
ences therein.

"Equation (2.1) as well as the other equations presented in Sec. I, differ
from the equivalent equations of Ref. 1 because they are written in “cylin-
drical” coordinates and not in characteristic coordinates. Also we have
fixed the gauge freedom choosing det ¥ = ¢ 2. This can be done without
losing generality as explained in the same Ref. 1.

8V. A Belinsky and V. E. Zakharov, Zh. Eksp. Teor. Fiz. 77, 3 (1979} [Sov.
Phys. JETP 50, 1 (1979)]. Note that Eq. (3.6) of the quoted reference is
misprinted. The exponent that appears in the last factor of Eq. (3.6) should
read — 2.

2681 J. Math. Phys., Vol. 25, No. 9, September 1984

9See for instance, J. L. Synge, Relativity: The General Theory {North-Hol-
land, Amsterdam, 1966), p. 352. The coordinates used in this paper are
related by a simple change of variables from the ones used in the quoted
reference.

19y A. Belinsky, Zh. Eksp. Teor. Fiz. 77, 1239 (1979) [Sov. Phys. JETP 50,
623 (1979)).

1C. Hoenselaers, W. Kinnersley, and B. C. Xanthopoulos, J. Math. Phys.
20, 2530 (1979); B. K. Harrison, Phys. Rev. D 21, 1965 (1980}.

2The relation between different solution generating techniques can be
found in C. M. Cosgrove, J. Math. Phys. 21, 2417 (1980).

13V. A. Belinsky and D. Fargion, Nuovo Cimento B 59, 143 (1980); V. A.
Belinsky and V. E. Zakharov, in Sources in Gravitational Radiation, edit-
ed by L. Smarr (Cambridge UP, Cambridge, 1979), p. 161.

4K. Oohara and H. Sato, Prog. Theor. Phys. 65, 1891 (1981) and references
therein.

15A particular case of (6.6), (6.7) can be found in Ref. 8 and G. A. Alekseev
and V. A. Belinsky, Zh. Eksp. Teor. Fiz. 78, 1297 (1980) [Sov. Phys. JETP
51, 655{1980)]. See also G. A. Alekseev, Dok. Akad. Nauk SSSR 256, 827
(1980) [Sov. Phys. Dokl. 26, 153 (1981})]; P. S. Letelier, Rev. Bras. de Fis.
{to appear).

'®Multiple soliton solutions in the elliptic case obtained using BT can be
found in the second citation of Ref. 11 and in G. Neugebauer, J. Phys. A:
Math. Gen. 13, 1737 (1980); D. Kramer and G. Neugebauer, Phys. Lett. A
75,259 (1980); W. Dietz and C. Hoenselaers, Proc. R. Soc. London Ser. A
382, 221(1982); Phys. Rev. Lett. 48, 778 (1982); M. Yamazaki, Phys. Rev.
Lett. 50, 1027 (1983); and references therein.

'7P. S. Letelier, J. Math. Phys. 23, 1175 (1982).

P. S. Letelier 2681



From/° to the 3 + 1 description of spatial infinity

Abhay Ashtekar®

Physique Théorique, Institut Henri Poincaré, 11, rue P. et M. Curie, 75 231 Paris, France,” and Physics

Department, Syracuse University, Syracuse, New York 13210

Anne Magnon

Département de Mathématiques, Université de Clermond-Fd, 63170 Aubiére, France, and Physique
Théorigue, Institut Henri Poincaré, 11, rue P. et M. Curie, 75 231 Paris, France

(Received 9 November 1983; accepted for publication 30 March 1984)

By carrying out a 3 + 1 decomposition of the spi framework, the expressions of the conserved
quantities, defined at / ° in terms of the Weyl curvature, are recast in terms of the initial data of the
physical space-time. In particular, the analysis brings out the supertranslation ambiguities in the
usual 3 + 1 definitions of angular momentum and clarifies, within the 3 + 1 framework, the
meaning of the stronger boundary condition needed to remove these ambiguities. The discussion
is so arranged that only a minimal acquaintance with the spi framework is necessary to appreciate

these issues.

PACS numbers: 04.20.Me, 04.20.Cv

I. INTRODUCTION

In the Arnowitt, Deser, Misner (ADM) formalism,' the
structure of the gravitational field at spatial infinity is ex-
plored by working on three-dimensional spacelike submani-
folds of space-time and using the Cauchy data induced on
these surfaces by the space-time metric. In the so-called spi
framework,* on the other hand, one conformally completes
the four-dimensional space-time by attaching to it the point
i° at spatial infinity and uses the curvature tensors of the
rescaled metric as the basic variables. The primary motiva-
tion in this shift of emphasis was to unify the description of
spatial infinity with that of null infinity. However, the spi
framework also clarified the role of supertranslations at spa-
tial infinity, introduced a method of reduction of the infinite-
dimensional asymptotic symmetry group to the Poincaré
group, and provided an expression of angular momentum
which is free of supertranslation ambiguities. The status of
these issues has continued to remain unclear in the three-
dimensional frameworks. Furthermore, even in the case of
the 4-momentum, an explicit proof showing the equality of
the spi expression involving the Weyl curvature of the 4-
metric and the ADM expression involving the Cauchy data
on a 3-surface is not yet available. The purpose of this paper
is to fill these gaps.

Section II is devoted to preliminaries. The basic defini-
tions are recalled and the supertranslation ambiguities in the
ADM definition of angular momentum are pointed out. Sec-
tion III deals with energy. The spi energy expression is recast
in terms of Cauchy data and shown to reproduce not only the
ADM expression, but six other expressions, some of which
have appeared in the literature in the context of the positive
energy theorems.* Section IV shows the equality of the spi
and the ADM expressions of 3-momentum. Section V deals
with angular momentum. The spi procedure for singling out

* Alfred P. Sloan Research Fellow.
® Equipe de recherche associée au C.N.R.S.
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the preferred Poincaré subgroup of the spi group is recast in
the 3 + 1 language. This yields a method for singling out the
asymptotic Euclidean group associated with any asymptoti-
cally flat 3-slice. In the final picture, the method involves
only that structure which is available in the ADM frame-
work and makes no reference to four-dimensional fields or
conformal completion. The geometrical significance of the
additional boundary condition necessary for the Euclidean
reduction is discussed. The spatial components of the spi
angular momentum are then recast in terms of Cauchy data.
The procedure also enables one to see clearly why it is diffi-
cult to deal with timelike supertranslations and supertrans-
lation-free boosts in the three-dimensional frameworks. The
material on angular momentum is so arranged that users of
three-dimensional framework can see the problem [discus-
sion following Eq. (28) in Sec. II] and its resolution (Sec. V)
directly in this framework without having to first under-
stand the spi formalism in detail.

Il. PRELIMINARIES

We shall first recall briefly the basic ideas of the spi
framework,* then summarize the results on the existence of
asymptotically flat initial data sets in space-times admitting
i*, and finally discuss the supertranslation ambiguities in the
ADM expression of angular momentum.

Definition I*: A space-time (M, g,,) will be said to be
asymptotically empty and flat at spatial infinity if there ex-
ists a space-time (J/l\l £.,) which is smooth everywhere except
atapoint/’, whereg,, isC~ °, together with an imbedding of
M into M (with which we identify M with its image in M )
satisfying the following condmons (i) J(®) = M— M; (i)
there exists a function {2 on M which is C >2 at 7 and smooth
elsewhere such that on M, g,, = 2%.,,and at °, 2=0,
V.2=0andV,V, 2 =28, and, (iii) the Ricci tensor R,
of g, is such that R, admits a regular direction-dependent
limit at /. R

Here J () is the closure of the region in (M,g,, ) which is
causally related to /°. Thus, the first condition requires that i°
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be spacelike related to all points of the physical space-time.
The second ensures that the conformal factor {2 falls off as
1/77 and the third demands that, in the physical space-time,
the stress-energy tensor of matter should fall offas 1/r*.° The
C >° condition on £,, implies that £,, is continuous at °,
smooth in its “angular dependence,” but that its radial de-
rivatives may have finite discontinuities at . Thus, the
Christoffel symbols of g,, may have radial discontinuities
(although they are smooth in their angular dependence).
These discontinuities turn out to be a measure of the total
energy momentum of the space-time. This differentiability
condition on g,, implies that its Riemann tensor, R, is
such that 2 'R, , admits a regular direction-dependent
limit R,,.,( 1) at *, where 7 is the unit spacelike tangent
vector at /° to the curve along which the limit is taken. The
Weyl tensor C,,,( ) can be split into “electric” and “mag-
netic” parts with respect to 7, E,, ( 7) = C,,.....( )77, and,
B, (7)) =*C,,...( 7)n"n". (Note that 7 is spacelike rather
than timelike; hence the quotation marks in “electric”’ and
“magnetic.”) E,, and B, are smooth, symmetric traceless
tensor fields on the hyperboloid & of unit spacelike direc-
tions at [° and satisfy

D,E,.=0 and D,B,, =0 (2.1)

in virtue of the asymptotic vacuum equations satisfied by the
physical metric g,, . (Here, D is the derivative operator on &
compatible with its intrinsic metric h,, =g, —n,1,,
where g,, =8,,..) E,, and B,, capture 1/r’-part of the
physical Weyl tensor. The Ricci part, R, (%) of R,,..(7)
only provides potentials for E,, and B,,. Set S, (7%)
=Ry (1) =4 R(7) g, and, K., =h,"h,"S,,,
—8,.. 7"7"h,,. Then K, is a smooth tensor field on &
and satisfies

B, =le,.,.D"K", , (2.2)

where €,,, is the alternating tensor on (< ,h,,). (The poten-
tial for E,, will not be needed in what follows.)

The 4-momentum P, is a covector at /°, constructed
from E,,: Given any vector V“ at /°, we have

P, v =—1—§ E,VvdSs®, (2.3)

87 Je

where the integral is performed on any cross section C of &.
One may imagine defining a “‘magnetic-type” (or, NUT®) 4-
momentum *P, by replacing E,, by B, in Eq. (2.3). How-
ever, because of Eq. (2.2) and because K, is smooth, *P,
vanishes identically. (The situation is analogous to that in
electrodynamics. To have a nonzero “magnetic”” 4-momen-
tum, one would have to weaken boundary conditions and
allow “wire singularities” in K_,.) The group of asymptotic
symmetries preserving the boundary conditions of Defini-
tion 1 is infinite dimensional: it is the semidirect product of
the Lorentz group with the group under addition of func-
tions on & (i.e., the group of supertranslations at 7°). This
group admits a preferred 4-parameter abelian group of
translations and the 4-momentum P, lies in the space dual to
the corresponding four-dimensional Lie algebra. To obtain
(the familiar, 6-component) angular momentum, however,
one has to impose stronger boundary conditions and reduce
the infinite-dimensional asymptotic symmetry group—
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called the spi group—to Poincaré. The required additional
condition is

B,,=lim 2 /2*C,,,,, (V"2 V3V 21 =0. (2.4)
(This condition is automatically satisfied if the space-time is
stationary or axisymmetric.”) If this condition is satisfied,
Eq. (2.2} implies that we can always require

K, =0. (2.5)
This last condition is left invariant by translations but not by
(other) supertranslations. Hence, if it is included in the
boundary conditions to be preserved by asymptotic symme-
tries, the asymptotic symmetry group reduces from the spi
group to the Pomcare [At null infinity, one may analogously
demand: lim 2 ~! “Cam,,,,n 7" =0, where A™ = = V™02 is the
(null) normal to .# . This implies that the intrinsic connection
{D} on . is free of Bondi news. If we include {D } in the
universal structure that should be preserved by asymptotic
symmetries, the Bondi-Metzner—-Sachs (BMS) group re-
duces to the Poincaré.® Unfortunately, unlike (2.4), the
above condition is too strong at null infinity since it rules out
radiation.] Finally, to obtain the expressxon of angular mo-
mentum, one requires that 3,,: = C,,.,, ($702 "/ 2)(V".() 172)
should admit a regular direction-dependent limit B,,,, at i
and defines M, at i° by

M., F*; — Lf)ﬁ Bo,CrdS"

for arbitrary skew tensor F,, at /°, where £*: = d Mo
is a Killing vector on (Z,h,,). Under the actlon of transla-
tions, B, transforms in just such a way as to change M, in
the familiar fashion. The condition B,, = 0 also features in
Penrose’s recent approach to conserved quantities: it is pre-
cisely the condition needed in the construction of the asymp-
totic twistor space which enables one to take limits of Pen-
rose’s quasilocal quantities to spatial infinity.'® The limiting
quantities agree with P* and M, constructed above. (The
condition B,, =0 also arises in Hawkings'' definition of
“asymptotically De Sitter space-times.”} From theorems
proved by Choquet-Bruhat, Christodoulou, and O’Mur-
chadha on the Cauchy problem in general relativity'? it fol-
lows that there is a large class of space-times which satisfy
Definition 1 and have B,, = 0. (For details up to this point,
see Ref. 3.)

Let (Mg,,) satisfy Definition 1 with completion
(M.2.,). Let 2 be any spacelike submanifold of M passing
through /°, which is C >' at /° and smooth elsewhere. This
means® that the metric §,, induced on 3 by g, is C >® at °
and that the extrinsic curvature #,, admits regular direc-
tion-dependent limits there. In Appendix B of Ref. 2 it was
shown that (§,,,7,,) satisfies the Geroch'? version of the
ADM asymptotic conditions. In Appendix A of this paper,
we consider the pair (g,,,7,,) induced on 3 = (2? — )by g,
and show that there exists a flat metric £,, outside some
compact set of 2, such that, in the Cartesian chart defined by
Jas» the components of tensor fields ,, — f., 3, p.> 7oy, and
d.,9,9.4 fall off at least as fast as 1/, 1/72, 1/7* and 1/7°,
respectively, as 7 tends to infinity, where d, and r are the
derivative operator and the radial coordinate defined by f;,, .
Thus, the Cauchy data (g, ,7*°) satisfy the usual ADM con-

(2.6)

abcd F

A. Ashtekar and A. Magnon 2683



ditions. Furthermore, since the stress energy of matter
sources falls off as 1/r* [condition (iii) in Definition 1], one
can use the Hamiltonian arguments in the spirit of ADM to
obtain conserved quantities. The ADM formula for energy is

E=—1_lim

T To—>x

— ,q,. i “dS". 2.7

(aa qbc

To compute the 3-momentum and the angular momentum,
one has to select suitable vector fields which generate spatial
translations and rotations at infinity. Let NV ¢ be any Killing
field of the flat metric £, . The diffeomorphism generated by
N “is a spi asymptotic symmetry (restricted to 2'). Let us set

0,.= El" lim ¢ (7, —

T ro—>x

™ 4., )IN“dSt.  (2.8)

If N ¢ is an asymptotic translation (d, N, = 0), ADM inter-
pret Qy, to be the component of the 3-momentum along N “,
and if N *is an asymptotic rotation (d, N,, = 0, d, N, #0), to
be the component of the angular momentum along the axis
of N °. Note, however, that the entire procedure is tied down
to the initial choice of the flat metric f,,. What happens
under the change of £, ? To investigate this issue we proceed
as follows. Let X, X,, X; be aset of Cartesian coordinates on
3 defined by f,,: f,, dAX°dX"* =dX* + dX,> + dX;*. In-
troduce a new set X ;. of coordinates, supertranslated with
respect to X,

Xy =Xx +Ac0,p) (2.9)

and consider the metric f/, defined by f/,dX'“dX"

=dX? +dX ;> +dX ;% Clearly, f, is also flat but not
equal to £, . To compare the two metrics, let us compute the
components £, of £/, in the X chart':

, _0X"“adx"? ,
S =g axv e
=8, +0(1/7).
Hence f,, — /., (and therefore, q,, — f.,) falls off as 1/r.

Thus, £/, is as good a flat metric as f,,. The energy expres-
sion (2.7) is unchanged if /}, and 3 are used in place of £,
and J,. Since the translations N'¢ of £, differ from the
translations N of f,, by terms which fall off as 1/, the
expression for 3-momentum is also unchanged. For rota-
tions, however, the situation is more complicated. Let
N =3/3¢ be the Z-directional rotation with respect to f,,
and N'“ = 3/d¢ ' be the Z "-directional rotation with respect
to f/,. Asymptotically, Z direction coincides with the Z’
direction. However, N * — N "* does not go to zero: the com-
ponents of N — N '“in the X j chart are

(c?A1 44,2 dA, 24, 0A; )
I I 9

Thus, at infinity, N “ — N *° yields an angle-dependent trans-
lation, or a supertranslation, whence, Q,. — @, .. is non-
zero. (Recall that 7, falls off as 1/7* and the 2-surface vol-
ume clement blows up like 2. Hence, the integral ¢(r,
— 7q,,)(N° — N'9dS? will not, in general, vanish even in
the limit.) Furthermore, by choosing suitable Ag (6,¢), one
can get, for the z-component of the angular momentum, any
answer one wishes (except in special cases in which 7 is,
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e.g., trace-free). Thus, as it stands, the ADM formula for
angular momentum is simply not well defined. The super-
translation ambiguities in this formula have to be removed
by imposing stronger boundary conditions which, for exam-
ple, will permit only a preferred class of flat metrics, related
to one another by asymptotic translations only. As it stands,
the ADM angular momentum is defined only up to additions
of supermomenta and hence cannot even transform correct-
ly under boosts of the 3-surface. (One knows? from the spi
framework that supermomenta are not conserved under
boosts; in fact they can change by arbitrary amounts.) Why
then, have explicit applications of the ADM angular mo-
mentum formula not shown these ambiguities? Apparently,
explicit evaluations of angular momentum have been carried
out only in the axisymmetric case, where the rotational Kill-
ing field—rather than a supertranslated version thereof—
offers itself as a natural candidate for being N °.*°

{ll. THE ENERGY

Let, as before, Sbea spacelike submanifold (of M )
whichis C > ! at i ° and smooth elsewhere. Let t° be the unit
normal to X at i °. The spi energy, associated with X, is given
by16

—Pt= — L§ E, t°t* d°S (3.1

87 Jc
where d°S is the volume element of a unit 2-sphere. We wish
to rewrite this expression in terms of the Cauchy data
(9.5,7°), induced on 3: = =3_r by g,,. We therefore begin
by expressing the integrand in terms of fields defined within

the  space-time. By definition, we have E,,
—=1im 2 '2C,,,,, 77", while a simple calculation shows
that, if ¢ is the unit normal to X with respect to g,,,

lim_, £ ~'t* = t°. Furthermore, as is shown in Appendix
A, 3 admits a flat metric f,, the inverse square, 72, of whose
radial coordinate » can be taken, without loss of generality,
to be the (restriction to 3 of the) conformal factor 2. Let us
make this choice. Then, we have

—Pt°= —— lim

T o~ Jr=r,

PPCopea 10t 4°S,
(3.2)
where C,,., is the Weyl tensor of g,, and 5° = f“°3,r, the

unit radial normal to the 2-spheres r = r,, with respect to £, .
Now, C,,.4t % = ey, the (usual) electric part of the Weyl

a

tensor with respect to 3. This electric part is related to the
Cauchy data (g, ,7°%) via

€ = 7
—49.79" + 929" W R

m
Ty Tmp + T ap

- éRcdnggmn) ’ (33)

where %, and R, are, respectively, the Ricci tensors of ¢,
and g,,. Now, it is shown in Appendix A that 7,, falls off as
1/7% and it follows from condition (iii) of Definition 1 that
R,, falls off as 1/r*. Hence, we have

PR, 7°n° &S

_Ppro= — L Jim (3.4)

T ro—~wo Jr=r,
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One sees already that the energy is independent of 7. Let
the derivative operators D and d, compatible with ¢,, and
J.»» Tespectively, be related by

(D*— 3K, =C,°K., VK,. (3.5)
Then

Co'= — i‘]w (0aGba + Fs9aa — Fuqas) (3.6)
and the Riemann tensor %, ¢ of ¢, is given by

‘@abcd=2(a[acb]cd+ Cc[ame]md)‘ (3.7)

Substituting (3.7) in (3.4), using the fact that (g, —/,,),
3.495.,and 3,9, q., fall off as 1/r, 1/7*, and 1/7, respectively,
and using the fact that d,d,r = (1/r){ f,, — 8,73,7), one ob-
tains, after some simplification

(acqab - abqac)fac dSb .
(3.8)

This is precisely the ADM energy formula. The simplifica-
tion involves the application of Stokes’ theorem to set certain
integrals equal to zero and hence calculation does not imply
that the integrands of Eq. (3.4) and of (3.8) are equal even in
the limit.

Remarks I: The same techniques as used above enable
one to show that the energy integral (3.1) can be reduced to
other useful forms, some of which have appeared in the liter-
ature in the context of the positive energy theorem. We shall
just list these alternate expressions.

(a) Expressions in terms of physical fields on 2 In addi-
tion to the ADM expression (2.7), we have the expression in
terms of the radial-radial component of the Ricci tensor,'”

P, = — lim

T ro—>e Jr=r,

E= -1 lim

T ro—>w

rR s Nn°d?V,, (3.4

r=ry

which suggests that the component may be thought of as the
“mass aspect” in 3 + 1 frameworks, and the following
expression in terms of the tensor C,,° of Egs. (3.5) and (3.6)

Cab c77c 77b dSa N

r=ry

E=-L lim
T ro— o

(3.9)

This expression involves the asymptotic behavior of the met-
ric connection D and is therefore very similar to Witten’s*
expression involving spin coefficients.

(b) Expressions involving 2-sphere fields: Consider the
foliation of 2 by a family of metric 2-spheres of f,, {surfaces
r = const}. Using Gauss—Codazzi equations, one can express
R .» 7°n”in terms of the intrinsic and the extrinsic curvature
induced on these 2-spheres by ¢, , and obtain, using Eq. (3.4)

E=—l— lim

T rp—w= r=ry

R — Pl + 0, )V,

{3.10)
where R is the scalar curvature of the 2-sphere » = ry; %7, ,
the extrinsic curvature, and 27 its trace. If f,, is so chosen
that the metrics on r = 7, 2-spheres induced by ¢,, and f,,
differ by terms of the order of 1/7? rather than 1/7,'® this
expression simplifies to the Geroch expression used by Jang*
in the context of positivity of energy:
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E=—1m ¢ A2R—(rp?v, .

21]‘ rg—+

(3.11)
(c) Expressions in terms of conformally rescaled fields on
3 As remarked earlier, the initial data (g,,,7**) on < satisfy
the Geroch version'? of the ADM asymptotic conditions.”
In the Geroch approach, one uses the conformally rescaled
fields 4, =2°q,, #°=0277 and Q,
=lim_, 2 ~'*D,D,2 — 24,,). Starting from (3.4), one
can show'”:

(3.12)

(3.13)

where the integrals are taken on the cross section C of the
hyperboloid & (of unit spacelike vectors in the tangent space
of 7’} obtained by the intersection of & with (the tangent
space at I° to) 2.

Remark 2: The “magnetic” analog of energy—the
NUT charge—can be obtained by substituting B,, in (3.1)in
place of E,, and is nonzero only if the present asymptotic
conditions are weakened to allow K, [of Eq. (2.2)] to devel-
op “wire singularities.” In the 3 + 1 framework this corre-
sponds to keeping the boundary conditions on ¢, as they are
but allowing 7,, to develop “wire singularities.” The 3 + 1
reduction of the spi formula then yields, for the NUT
charge,'¢

APt —ng B, tt°d?S (3.14)
87 Je

— LY dimd  AD, 7, ptlS™.(3.15)

47 rorw Jr= ro

IV. THE 3-MOMENTUM

The steps leading from the spi-expression of the 3-mo-
mentum to the ADM expression are completely analogous
to those which led us from Eq. (3.1) to Eq. (3.8). For com-
pleteless, we sketch them briefly.

The component of the spi 3-momentum along a space-
like vector N“ at /° (which is tangential to 3 ) is given by

PGN“=LSE E,N°dS’. (.1)

87 Jc
As before, one rewrites this expression as a limit of integrals
over metric 2-spheres of £,, within 3 to obtain

|
Pa N*=— lim r"Cabcd 77b77dN “t°d 2S » (4-2)

T ro—~o r=ry

where N ¢ is a translational Killing field of f,, which induces
the spi translation corresponding to N at /°. [Note that, at /°,
the limit of £2 ~'N * is direction dependent and is given by
N — 2(N - n)57°. However, the term proportional to 7 does
not contribute to (4.2) since the Wey! tensor is already con-
tracted with %” and #“.] One can now expand the physical
Weyltensor C,,,, in terms of its (usual) electric and magnetic
parts relative to 3, e,, = C,,,.,,t ™t " and b, = *C,,, t™t"
to obtain
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Cﬂbtd 77b77dN ﬂt = — €aam b mb 77b77dNa ’ (43)

where €,,. is the alternating tensor on (2,q,, ). Next, using
the identity

bab = Emn(aD mﬂ’nb) (4‘4)
one gets
PN = Iim P

T o~ Jr=r,
XD g Toyp + Suap€mmD "7 N d S . (4.5)
One now simplifies the integral using the facts stated below
Eq. (3.7) to show the desired result:

PN=— fim § N, —mq,)dS".

T ro—>o Jr=ry

(4.6)

Again, the simplification involves the use of Stokes’ theorem
to discard certain integrals, whence the calculation does not
show that the integrand of Eq. (4.2) [or (4.5)] is equal to that
of Eq. (4.6) even in the limit. Finally, the techniques used in
the simplification also yield other, equivalent expressions for
the 3-momentum in terms of the initial data. Perhaps the
most useful among these for explicit evaluations in special
cases is

PN = lim

T ro—>o Jr=r,

(N, 9y, m°dS”. (4.7)

V. THE SPATIAL ANGULAR MOMENTUM

This section is divided into two parts. In the first, we
discuss the issue of reducing the infinite-dimensional asymp-
totic symmetry group associated with (,g,,,7*) (the “spa-
tial spi-group™) to the Euclidean group, and in the second,
re-express the spi expression for the spatial component of the
angular momentum in terms of initial data. For the conve-
nience of readers who may not be familiar with the details of
the spi construction, here the Euclidean reduction will be
carried out entirely in the 3 + 1 framework, spi formalism
being used only to motivate the required additional fall-off
condition. The proof that the Euclidean group so obtained is
the same as the one which results from the spi construction is
given in Appendix B.

A. Euclidean reduction

The additional condition needed to reduce the spi group
to the Poincaré group is B,, =0 [Eq. (2.4)]. Now we are
interested only in the 3-surface 3, rather than the entire
space-time, and hence, in removing only the ambiguities as-
sociated with spatial supertranslations within 2. An exami-
nation of the discussion surrounding Eqgs. (2.4) and (2.5)
yields the relevant condition. It is'®

Bty =0, (5.1)
where t° is, as before (the vector field induced on & by) the
unit normal to X at /, and y,”, the metric on the 2-sphere
cross section of &, perpendicular to t*. To translate this
condition in terms of physical space-time, let us introduce a
flat metric £, in a neighborhood of infinity of 2’ and consider
a family of metric 2-spheres of f,,,. If 7,,, denotes the metric
induced on this family by the physical metric g,,,, and r, the
radial coordinate with respect to f,,, Eq. (5.1) reduces to
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lim »#,, /", =0

in virtue of the definition of B,,, Eq. (3.3), and the fall-off
conditions satisfied by 7, and the matter sources. Thus, the
spi formalism implies that the Euclidean reduction is possi-
ble if the radial-angular components of the three-dimension-
al Ricci tensor fall-off faster than what is guaranteed by the
fall-off of ¢, . (Note that the radial-radial component of 22,
cannot be required to fall-off faster than 1/7° unless the ener-
gy associated with g, is zero.) It is straightforward to check
that (5.2) is supertranslation invariant: if it is satisfied by the
metric 2-spheres of £, , it is satisfied by the metric 2-spheres
of any supertranslated flat metric f .

We are now ready to carry out the reduction. Equation
(5.2) is, via Gauss—Codazzi equations, equivalent to

(5.2)

lim 7 2D, (7" — ry**) =0,
where 2D is the derivative operator compatible with y, , °7,,
is the extrinsic curvature with respect to g, of the 2-spheres
under consideration, and %7 its trace. The idea is to solve this
equation and choose the preferred Euclidean group by im-
posing suitable conditions on the solution. For this purpose,
we first express 2D, in terms of the derivative operator 8,
induced on the 2-spheres by the flat metric £, to obtain
8, (™ =2y ) = (/PBalV ™" Wwn — Va)) = 0(1/F),

(5.4)
where y,, is the metric induced on 2-spheres by f,,, Y is its
inverse, and where the remainder o(1/7°) satisfies
lim, . _ ~o{1/r’) = 0. Now, on a 2-sphere of radius r (with
respect to f,, ), 3 is the standard 2-sphere derivative operator
(compatible with ;/ab) and the general solution to the equa-
tion 3,p®® = 0 with p*® = p“*' is (Appendix C)

P = — &g+ [178,0,8 + (/7] (55)
for some function g on the 2-sphere. Hence, it follows that
the general solution to (5.4) is
(e — 2my) = — 30 + (37 + (1/7)e)

+ (UAFY " W = Voe)) + 01/7P),
(5.6)
where g is a sum of terms of the type®® g = Zh,(r)K,(6,¢),
and where 3> = "3, 3, . Now, a direct calculation of *7*
yields [irrespective of whether (5.2} is imposed]

T = (U + 0(1/r), (5.7)
where lim, . 70 (1/r7) exists but is not necessarily zero.
Hence, it follows that there exists a function f of the type
f=K(6,p)+ Zh,(rK,0,¢) where lim,__ h,(r)=0, such
that

Pt —2mp®) = — 6% + (62 + —rl;)fi/"”

(5.3)

+ L — V) + 0 )

— ——l';ﬂb—éaabK
r

1 o 1
a2 -—)K b4 o(—) . 5.8
+ ( + 5 )Kv = (5-8)
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[fis given by f= — r + g, where g is obtained from g by
ignoring terms in its expansion for which 4, (r) diverge or fail
to admit a limit.] Taking the trace of (5.8) with respect to ¥,
one obtains

S (62 +3)K(9<p) +o(i>.

r r ’ r

Note that, had q,, been equal o0 f,,, >m would have been
equal to 2/r while if g, had not satisfied (5.2), it would be of
the type 27 = 2/r + O (1/7%) [given by (5.7)]. Thus, satisfac-
tion of (5.2) yields an in-between situation in which the terms
in 1/7 are present but have the specific form, — (8°
+2/P)K (6,9)

Let us now carry out a supertranslation (2.9}, Xy —X ¢
= Xy — Ag(6,¢ )and work out >, the trace of the extrinsic
curvature of the metric 2-spheres of f ;,, computed using g, -
A long but straightforward calculation yields

(=22 ).

(5.10)

(5.9)

where 7 are the components of the unit radial vector f*°d, r
in the Cartesian chart X . (Note that 7*A ¢ is independent of
7, i.e., is a function of & and @ only.) Hence, it follows that, if
we make a supertranslation with A, 7* = K (6,9 ), we would
have

2 = 2/¥ +o(1/77). (5.11)

Thus, by an appropriate supertranslation, we can get rid of
the terms of the order O (1/7%). Furthermore, if we wish to
preserve the absence of such terms, we can only make such
further supertranslations for which A, 7* satisfies

(8% +2/P)Ax 75 =0, (5.12)

which is precisely the condition defining translations. Going
back to the full extrinsic curvature (5.8), we have, for those
flat metrics £, which satisfy Eq. (5.11)

lim F2(*7® — 1/ry*)=0.

r—oo

(5.13)

Thus while, in general, the metric 2-spheres of any flat met-
ric (to which g,, approaches at infinity as specified in Sec. I1)
satisfy (5.7), if ¢, satisfies (5.2) we can find a family of flat
metrics which satisfies the stronger condition (5.13). Two
flat metrics belong to this family if and only if they are relat-
ed by an asymptotic translation. Hence, if this family is in-
cluded in the universal structure to be preserved by asympto-
tic symmetries, the asymptotic symmetry group reduces to
the Euclidean group.

To summarize, the supertranslation freedom arises be-
cause there are many flat metrics which asymptotically ap-
proach ¢,, as 1/r. However, if ¢, satisfies (5.2), there exists,
among these, a preferred family whose metric 2-spheres have
“fewer wiggles, as seen by g,,.” Killing vectors of any one of
these preferred metrics differ by the corresponding Killing
vectors of any other by an asymptotic translation rather than
a supertranslation. One must use these Killing vectors to
make the ADM formula unambiguous.
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B. Spatial angular momentum

To re-express the spatial components of spi angular mo-
mentum (2.6) in terms of (g,,,7”) we proceed as follows.
Choose a flat metric f;, in the preferred class so that (the
unprimed version of) Eq. (5.13) is satisfied. As shown in Ap-
pendix B, there exists, in the spi framework, a conformal
frame in the preferred class for which K, vanishes on &,
such that on 3, £2 = 1/7°, where r is a radial coordinate of
fu»- Let us work with this conformal frame. Then, B, in Eq.
(2.6) is given by*!

B.y = lim *C,,,,, (gD, 7)(q"D,r)[¢° (D.r)D,r)] " .
Next, on the cross section C of the hyperboloid &, perpen-
dicular to t* (i.e., the intersection of & with the tangent
spaceto S atr”), §*: = Je**?F 1, is necessarily parallel tot”,
if F., is a 2-form tangential to 2. Set £* = ft°. Then, it is easy
to verify that the function f on C is a “spatial translation,”
i.e., satisfies °D, *D, f + y,,f = 0, where v, and °D are, re-
spectively, the metric and the derivative operator induced on
C by the metric h,, on &. (Thus f is a spherical harmonic
with / = 1 on the metric 2-sphere C.) Armed with this infor-
mation about B,, and §’, we can now re-express (2.6) in
terms of the initial data. Assuming that F, lies within X at °,
we have for the spatial angular momentum M,, F**

M, F* = - lim

T ro—>

*C oo 7P APV,
(5.14)

where 7 = (¢™"D,,rD, )~ '/*¢**D, ris the unit normal to the
2-sphere r = ry; t ? is, as before, the unit normal to 2 (with
respect to g, ); and, d *¥, is the volume element induced by
9., on the 2-sphere r = r,,. Thus,

M,,F = - fim by, 77t d?V, (5.15)
T ro—~ew Jr=r,
= “1; lim ¢ ™D, 67,7 dV, . (5.16)

Now, we only have to simplify this last integral. Since we
began with the well-defined expression (2.6), we know that
the limit of the integral in (5.21) exists. However, since the
integrand now contains an effective factor of 7*—the pro-
duct of the explicit #* and the 7* hidden in d *¥,—and since
D,r,, falls off only as 1/7, a greater care is needed in the
simplification than was necessary before for the 4-momen-
tum.
By integrating by parts, (5.21) can be re-expressed as

1 .
MuF = o= tim (§ D e, 7, 7077V,

T rg—~w

- eamn(‘Dm ﬁa ﬁb )fﬂnbroz d qu

r=ry

- §_ eam"ﬁa 7“7b77-nb(Dmf)r()2 szq]

=A+B+C, say. (5.17)
Let us simplify each term separately. We have
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1 .. e
A=—1lm ¢ (", +#"7,)D,

T oo Jr=rp,
X (6" g, "?b f]’oz d? v,
=Llim § e n, DA, W, (5.18)

T o~ Jr=ry

where A ~? = ¢*®*(D,r){D,r). Here we have used Stokes’
theorem, the fact that #° is unit and the fact that
A =1+ O(1/r}. To simplify B, we again use these two facts.
The result is

B= — L lim

T ro—>o

(€™ R, (D, A M 1°75?

+ €, 7, 77, O AR ) A 2V, (5.19)
where ?7,, is, as before, the extrinsic curvature of the 2-
sphere r = r,. Now, since we have chosen the flat metric £, in
the preferred class, we have (°m,, — 1/ry,,) = o(1/r"). Be-
cause of this, the second term in the above integral vanishes
[it would not vanish if *7,, — (1/r)y,, were O (1/7%)]] and we
have

B=—4, (5.20)

Finally, to simplify C, we note that €?* = A ~'¢®*y, is the
natural alternating tensor induced by the flat metric f,, on
the 2-spheres r = r, and that

£° = ry€D,f = r?A ~'e® . D, f (5.21)

is a rotational Killing field of f,, (whose axis is orthogonal to
F,,). Hence,

c=Ltimdé Ar,e°ds®.

T o~ Jr=r,

(5.22)

Finally, using the Euclidean reduction condition, one can
show that A = 1 + o{1/7). [That is, because (>, — (1/77.,)
=0(1/7), the volume elements €, =€y, and €*
= €**D, r, induced on the 2-spheres by g,, and £,,, respec-
tively, differ by terms of the order o(1/r) rather than O (1/r).]
Hence, we have, combining (5.17), (5.20), and (5.22),
7,E°dS?,

M, F* = _81— fim (5.23)

T o~ Jr=r,
which is the ADM expression. Thus, the ADM prescription
isnot “wrong”’; it is incomplete. Finally, note that the simpli-
fication used the Euclidean reduction condition (5.13) cru-
cially; had the flat metric f,, not been in the preferred family,
the spi expression would not have led to the ADM expres-
sion.

Remarks: We have seen that, if the angular-radial com-
ponents of an asymptotically flat metric g,, fall off faster
than 1/7°, one can invariantly associate to g,, a preferred
family of flat metrics f,, which are related to each other by
asymptotic translations. The interplay between the curva-
ture of ¢, and the extrinsic curvature (with respect to g,,, ) of
the 2-spheres of /,, seems to be interesting even just from the
viewpoint of differential geometry, without any reference to
the physical problem of angular momentum. Indeed,
a priori, using only general geometrical considerations, one
would have expected that an Euclidean reduction would be
possible only if g,, approaches a flat metric as o(1/77). It is
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somewhat surprising—and, from the physical viewpoint,
fortunate—that the reduction is possible under a weaker
condition which is *“in between” the above stronger require-
ment which rules out 3-metrics with nonzero mass and the
original ADM conditions which permit supertranslations.
From a direct physical viewpoint, however, conditions
(5.2)and (5.13) are somewhat obscure. A large class of exam-
ples satisfying these conditions is provided by the metrics
considered by O’Murchudha®* and Chrusciel?® in connec-
tion with supertranslation ambiguities. Fix any flat 3-metric
J. outside a compact set of I and consider any metric g,
whose components in a Cartesian chart of £, are given by

Gur = (1 + M (0,0)/1) fao — 0(1/7), (5.24)

where 6,¢ and r are the spherical polar coordinates associat-
ed with the Cartesian chart. Then, it is easy to verify that g,
satisfies (5.2) and the metric 2-spheres of £, satisfy (5.13).
Thus if the 3-metric is “Schwartzschildean to the leading
order,” as pointed out in Refs. 22 and 23, the supertransla-
tion ambiguities disappear. But the class of 3-metrics satisfy-
ing (5.2) is in fact larger and a characterization of this class
along the lines of {5.24) is not yet available.?*

Finally, note that it seems difficult to eliminate the su-
pertranslation freedom associated with boosts if one works
within 3 + 1 frameworks. In the spi framework, supertrans-
lations correspond to arbitrary functions on the hyperboloid
Y, and hence, in the physical space-time, there exist space-
time supertranslations which induce identity transforma-
tions on the 3-manifold 2. Obviously, such supertranslations
cannot be eliminated by imposing stronger boundary condi-
tions on Cauchy data on 3. Thus, it is not possible to recover
the Poincaré group ina 3 -+ 1 framework. One may, instead,
try to recover just the Poincaré Lie algebra by considering
only the infinitesimal boosts off . But the treatment loses its
simplicity because the boosts are treated differently from
rotations and it seems difficult to interpret geometrically the
conditions which arise in the construction.
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APPENDIX A: TRANSLATION OF ASYMPTOTIC
CONDITIONS IN THE PHYSICAL SPACE LANGUAGE

. Let (Myg,,) satisfy Definition 1 with completion
(M3,,). Let Sbea spacelike submanifold of M passing
through * whichis C > ' at " and C = elsewhere. This means
that the metric §,, induced on 3 by g, is C >®at i and that
the extrinsic curvature 7, admits a regular direction-depen-
dent limit there. Consider any chart X°=(%, §, 2) on 2, cen-
tered at /%, which is C > ! ati°and C = elsewhere, and in which
the components §,; of §,, are given by g5 = 8. Set
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# = %% + 9% + 2% Then using the 'Hopital’s rule, one can
show that lim £2 /7 = 1 and that 2 /# is C >° at . Hence,
without loss of generality, we can choose 1/#* as the confor-
mal factor. We make this choice and, from now on, use hat-
ted quantities to refer to this conformal frame.

Let f,,b be the flat metric for which X*servesasa Carte-
sian chart. fab is, by construction, C >° at I’ and equals qa,, at
. Hence, the difference between §,, and f » 1s of the form

Gas _f;zb =4 1/2dab ’ (A1)
where aab admits regular, direction-dependent limigs at’’.
Let us now introduce a C *-chart X*on 2 =2 — " by
X* = X*/# and consider the flat metric f,, on 3 for which
X *is a Cartesian chart. A
f.» is badly behaved at /* and is related to f, by f,,
= (1/#,,=r"f,,, where » = X + ¥? + Z* Next, let us
compute the components of §,, in the X *-chart. We have

8;1\’” 31?" - ~
Aa =— —(fa +{)’/2dé-
9ab axe 8Xb(fd a)
= rl S +— = dsb (A2)

where d,, are again functions which admit regular direction-
dependent limits to i °. Hence, q,,, = 2 7%, = r*g,, has, in
the X *-chart, the following components:

9o =S +1{1/7)dy, . (A3)

Finally, the derivatives of the functions d,;, with respect to
X * are given by

J axm 3 1( xn ) 3
d, =2 __ 2 g4 =—(6" —22_x,|-2—d,,
ax* > axcax™ * A 7 gxm

—_ _1__ m m, 1/2 d ]

N LT T PR
Since the functions d,,, admit regular direction-dependent
limits at r°, the quantity in square brackets also does so.
Equations {A3) and (A4) imply that there exists a flat metric
fas such that, in a Cartesian chart X * defined by it, the com-
ponents of g,, — f., are O(1/7) and of J.q,, are O (1/r7),
where J is the derivative operator of f,,. Actually, one can
continue in this manner to show that the components of
d.d,4q,, fall off as 1/7°, those of d,,d,.9,4q,, fall off as 1/F%,
etc. [This is because the fact that 4 admits a
regular direction dependent limit d implies that?
lim(2 /2D, et 2p, 2 2p, )d  exists and equals
‘D, D, - 2D ,, 4 for all n. One can, of course weaken this
requirement by fixing the maximum permissible value of  if
one so desires. ]

Since 3is C > !, its extrinsic curvature, #,, , with respect
to &,, admits direction-dependent limits at /°. By converting
the components of 7, from hatted to the unhatted chart and
using the relation between #,, and =, it follows that the
components of 7,, in the X * chart are O (1/7).

APPENDIX B: EUCLIDEAN REDUCTION FROM THE SPI
VIEW POINT

In this appendix we shall derive Eq. (5.13) (which led to
Euclidean reduction) starting from the spi framework. The

2689 J. Math. Phys., Vol. 25, No. 9, September 1984

derivation shows that the Euclidean group obtained in Sec.
V is the Euclidean subgroup (associated with X' ) of the Poin-
caré group selected at ° by Eq. (2.5).

In the spi framework, one can remove the spatial super-
translational ambiguities associated with 3 by requiring,'”
on %,

‘Yam’Yb nKmn = O ’ (Bl)

where y,™ is the natural metric on the cross section C of &
singled out by 2. Using the definition** of K,,,,, in terms of
the Ricci tensor of ¢, and the fall-off condition on the mat-
ter stress energy from Deﬁnition 1, (B1) reduces to

lim 2 =%, "5, [297°(9.9,2 )7, —2V,,9,2] =0,
(B2)

where 7° = V2 /2 and 7,,,, is the metric induced on the 2-
spheres £2 = const by 7, . This is a restriction on the choice
of permissible conformal factors. Next, following Appendix
A, we introduce on J a flat metric £, whose radial coordi-
nate 7 equals £2 '/*. Thus, we now have a restriction on the flat
metrics. To recast this condition in a convenient form, let us
recast (B2) in the physical space language. For this, we have
first to re-express the tensor on the left-hand side in terms of
the unhatted differential structure (or, equivalently, re-ex-
press it in terms of its components in an unhatted, asymptoti-
cally Cartesian chart) and then re-express the connection V
in terms of V. Then, (B2) becomes

lim Ay, ™y, "(44

r—co

~'D,.1,

—HGDA T Wow — 4 T T, ) =0, (BY)

where, as before, A =% = ¢**D,rD, r and 9° = A¢°°D, r is the
unit normal to I” = const 2-spheres. Finally, using the defin-
ition of the extrinsic curvature, *7,,, with respect to g, of
the r=const 2-spheres, the fact that (*m,, —¥,,/7)
= 0(1/r) and the fact that A = 1 + O{1/r), one can re-ex-

press (B3) as

lim rz(zﬂ'ab - % 7/,,,,) =0. (B4)

r—oo

Thus, Egs. (B1) and (B4) are equivalent. The former selects
the Euclidean subgroup (associated with X' ) of the Poincaré
group at /°'” while the latter led us, in Sec. V to select an
Euclidean subgroup of the asymptotic symmetry group asso-

ciated with the physical space 2.

APPENDIX C: GENERAL SOLUTION TO 3,P%* =0

Fix a 2-sphere S of radius 7 in the Euclidean space
(2, f.,) and consider the equation d,p® = 0 on symmetric
tensor fields p*® on S, where 3, is, as before, the derivative
operator compatible with the metnc yab induced on S by fa,,
Let £ “ be any Killing field on (S,y,,). Then, 3, (p™£,) =
Thus, Ve= p“’€, is a divergence-free vector field on S,
whence €,, V' ? is curl-free. Since every 1-loop is contractable
to zero on S, there exists a function 4 on S such that 6,,,, ye
= D,h, whence V®=¢e™D,_ h. The function A is defined
only up to a constant. Let us eliminate this freedom by fixing
an arbitrary point p, on § and demanding that hlm = 0. (The

final solution will be of course independent of the choice of
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the point p,.) Thus, every solution P*° to the equation under
consideration defines a mapping ¥ from the space of Killing
vectors £ “ on (S,y,,) to functions 4 on S. Recall, however,
that every Killing field is completely characterized by its
“Killing data” (£¢, §,,&, =& €,,) evaluated at any point p of
S.%° Hence, given any point p in S, we have a linear mapping,
¥, (&8 )l,,“’hl,, which associates with every pair (£ %,§ ) con-
sisting of a vector £ “ and a number £ at p, a number 4 at p.
Hence, there exists a vector field v, and a functionvon .S (“a
dual Killing data”) such that

v.EotEv=h 1)
for all Killing field £ “ on S, where £ is the function on S given
by 8,&, = &¢€,,. Recalling the definition of 4, we have

P, = €48,h = €3, (v, ™ + £v)

= fba[(abvm)gm + V0,6 "+ 80,V +v3,¢ |
{C2)
Given a point p, we can always consider two Killing fields
whose values at p yield linearly independent vectors at p and
whose derivatives vanish at p. Using these Killing fields in
Eq. (C2) and the fact that every Killing field £ satisfies
8,8,£.=(8,£ )€p. =} 2Re.,€,4€ %, We obtain

P = €@,v") — bR, (C3)

where 2R is the scalar curvature of (S,y,, ). Now, we can use
the fact that P°™ is divergence-free. Thus,

0=0,P"" = ¢€3,3,v" — }(R )y™8,v

= 1€"(1 2Re,, €™, V") — JPR 5™, (C4)
whence, we conclude
Vv, = €,,0™V; (C5)

substituting for v, in (B3), we now have
P = €78, (€™3,v) — {R vy
="y — VY88, v — IR vy
= 30"y — Y8 + J*R ) . (C6)
Finally noting that the scalar curvature, *R, of a 2-sphere of
radius ris given by 2R = 2/7%, we obtain the general solution
tod P =0

P = 8%™y — (& + (1/7PW) (C7)
for some function v on S.

A completely analogous procedure shows that,>* on the
hyperboloid & the solution to the equation DK, ,. =0,
K, =K, is given by

K, =D,D,v + vh,, (C8)
for some function v on &. It is this result which enables the

Poincaré reduction of the spi group in the case when
B, =0
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fined using, inequivalent completions may be complicated. For details, see
A. Ashtekar, in The Proceedings of the 10th International Conference on
General Relativity and Gravitation, edited by B. Bertotti et al. {Reidel,
Dordrecht, The Netherlands, 1984); and in The Proceedings of the Oregon
Conference on Mass and Asymptotic Behavior of Space-time, edited by F.
Flaherty and J. Isenberg (Springer, Berlin, 1984),

'*Note that our signatureis — + + +.

'"Note that one can also show that lim § r%,,q°°d >V, = 0 and use this fact
to obtain alternate expressions. This fact is also used in the passage from
Eq. (3.4} to (3.12) and (3.13).

'$That an additional assumption is involved in the derivation of (3.11) seems
not to have been noticed before. This additional condition can always be
satisfied if the additional boundary condition, discussed in Sec. V, for an-
gular momentum to be well-defined is satisfied. {Also, our expression
differs from Geroch’s by a factor of two.)

%In view of Eq. (2.2), Eq. (5.1)is equivalent to the requirement that, the pull-
back, K, of K,, to the 2-sphere cross section C of the hyperboloid &
defined by 3 should satisfy ’D, K, . = 0, where D is the intrinsic deriva-
tive operator on C. Hence, one can demand, in place of Eq. (2.5), K, =0
on S. This condition removes the spatial-supertranslation ambiguity asso-
ciated with 2.

2076, are a set of spherical polar coordinates adapted to f,,. The 2-spheres
under consideration are given by r = constant.

21In Refs. 2 and 3, B, is defined to be the limit to 7 of
*C,n (V02 V(T2 12, i, *C,p, (V7F)(V"r). But since B,, vanishes
and since %° is proportional to V°r, with the proportionality factor ap-
proaching 1 as O {1/7), one can replace V°r by n°.

22N. O’Murchadha (private communication).

23p_ Chrusciel (private communication).

240bvious generalizations of (5.24), .., ¢,, dX °dX *= (1 + M,(8,¢)/r)dr

+ (1 + My(8,p)/rdB? + sin” 8 dp ?) + o(1/7) do not satisfy (5.2).

25See, e.g., A. Ashtekar and A. Magnon-Ashtekar, J. Math. Phys. 19, 1567

(1978).
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Finite energy electric monopoles in an extended theory of gravitation
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We present a one-parameter family of extended Einstein-Maxwell Lagrangians in which an
antisymmetric tensor field is nonlinearly coupled to both the gravitational and electromagnetic
fields. We show that for arbitrary, positive values of the relevant parameter, the theory admits
exact, static spherically symmetric solutions with everywhere finite electric field density and
energy density. Asymptotically, the solutions are indistinguishable from the Reissner—
Nordstrom solution in general relativity. In addition, we show that a corrected form of the exact
solution in the nonsymmetric Kaluza—Klein theory presented in an earlier paper provides a

special case of the family of solutions described above.

PACS numbers: 04.50. 4+ h, 11.10.Ef

I. INTRODUCTION

Much work has been done recently on an extended the-
ory of gravitation' in which an antisymmetric tensor field
8uv) (the “skewon” field) is coupled in a highly nontrivial
way to the symmetric metric g,,,, of general relativity. In
particular, the two fields are combined to form a new geo-
metrical object: a sesquilinear, Hermitian fiber metric.>?
The predictions of the theory are consistent with all solar
system data* and have interesting consequences for astro-
physics® and cosmology.® In the following we present exact,
spherically symmetric, static solutions to the field equations
which result when the skewon and graviton fields are cou-
pled to the electromagnetic field F,,, . The Lagrangian is sim-
ilar to the one derived by Kalinowski using a Kaluza—Klein
approach.” It is different, however, due to the absence of the
polarization tensor H,,,, which plays an important role in
Kalinowski’s theory, and it also differs due to the presence of
afree parameter A, which is fixed to be 2 in the Kaluza—Klein
version. It isimportant to note that the interesting properties
of our solution do not depend on the particular choice of
parameters which result in the Kaluza~Klein approach.
They depend only on the presence of a nonlinear coupling
between the antisymmetric tensor field g, ;, and the electro-
magnetic field.

In Sec. 11, we write down the Lagrangian of interest and
derive the field equations. The static spherically symmetric
solution is found in Sec. III, and its properties discussed. In
Sec. IV, we derive a corrected version of the field equations
from the nonsymmetric Kaluza-Klein Lagrangian of Kalin-
owski and show that in the static, spherically symmetric case
they reduce to the equations of Sec. III with a particular
choice of parameter A. This section also corrects an earlier
paper,® in which incorrect field equations were used to ob-
tain a solution. As we shall see, most of the conclusions of
that paper remain valid. The exact form of the solution, how-
ever, does change. Finally, we summarize our results in Sec.
V and present some conclusions.

ll. THE LAGRANGIAN AND FIELD EQUATIONS

The extended theory of gravitation we will consider is
Moffat’s nonsymmetric gravitation theory (NGT). (For a re-
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view see Ref. 1.) The theory is based on a Hermitian, hyper-
complex-valued fundamental form g,, =gg,, +Jgl..
where J? =1[2,3]). The gravitational Lagrangian is con-
structed from the fiber metric g,, and a generalized Ricci

tensor
Ruv(W) = W;f%p - %(W/fpvv + W*‘;,u)
-Wh Wip +W§A we, 2.1)
where W ﬁv is a hypercomplex-valued, metrically compati-
ble connection such that

InEq.2QW,=W(, =y (Wi —W3),andI"} (g)is
a hypercomplex-Hermitian, metrical connection deter-
mined uniquely from the metric by the following equation:

Luvi — 8k s — 8uel 3, = 0. (2.3)

Note that Eq. (2.2) constrains " (', | to be zero.

The full Lagrangian we wish to consider, including the
electromagnetic field F, =4, 6 —4 is (in units
G=c=1)

L :?#VR,MV(F) +%?[”V]W[#,V]

+4m/ —g(F*F,, — A (g""F,.)%); (2.4)
where F #'=g*#g”F_ 5, g""is defined by g*’g, , = 6}, and
g"'=y — gg*”. In addition, we have used the fact that

R, (W)=R, (') +3W., (2.5)
which follows from Eq. (2.2). Since we are using a second-
order formalism® for g,,, the fundamental fields we must

vary areg,,, W,, and 4,,. The resulting field equations are,
respectively,

Ruv(W) - %gva (W) = Sﬂ-Tuv’

vou

(2.6)

¥ =0, (2.7)

e 8™ + 28 P )F,p), = A (2" 8" *PIF, ), (2.8)
where
T[.LV = - (gaBFayFﬁv - /{g[aB]FaBFyV)

+‘ltg,uv(FaBFaB _/l(g!aB]Faﬂ)Z)' (29)
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Here 7}, reduces to the ordinary Maxwell stress energy ten-
sor when g,,,.; = 0. In general, it is nonsymmetric but Her-
mitian, so that T, = T'{,,) + JT'{,,,. In addition the trace
of T, with respect to the full nonsymmetric vanishes identi-
cally: g#*T,, = 0. Another interesting feature of the above

field equations is the induced current density
JiﬁdE/{ ( vV — gg[ #V]g[aﬁ]Faﬁ ),v;

which is identically conserved. This induced current density
plays an important role in the nonsingular behavior of the
solution to be considered. Note that this induced current
vanishes to linearized order because the skewon—photon
coupling in the Lagrangian is quadratic in both g!**! and
F{,. (see Ref. 10). Finally we remark that the somewhat
complicated form of the left-hand side of Eq. (2.8) is due to
the fact that in general ( — gF #*} , is not real (it may have
hypercomplex-valued components). Naturally, the physical
electromagnetic current must be real:

Jé =Re[(V—gF"),]
—_ [(y(aﬂ)gtﬁv} +¥[ap]ng))Faﬁ],v
=4[ (g + 2 *gP)F, 4],

(2.10)

(2.11)

This is precisely the form which appears in Eq. (2.8), and is a
direct consequence of the fact that the electromagnetic La-
grangian is real by construction.

1
—allrt = bV + b9
1o 0
Tpv—- 2 (r4+b4) 0
— {1 —44) — b3/ + b

where we have defined b * = 24/ * and we have made the stan-
dard coordinate choice ¥ = 3.

As a consistency check, one can verify that the T, giv-
ent above satisfied the conservation laws of the theory. These
conservation laws follow from the fact that R, (I") and
R, (W) satisfy a set of generalized Bianchi identities'?
which require T, to satisfy

(?uaTﬂp +?a#Tpu),a + v _ggaﬂ,pTaﬂzo- (36)
In the static spherically symmetric case we are considering,
it can be shown that the only nontrivial equation in (3.6)
takes the simple form

(¢"'Tyy), — 1P Tiup =0 (3.7)

It is interesting to note that only the symmetric part of T,,
plays a role. If the expressions for 7, given by (3.5} are
substituted into the left-hand side of (3.7), the result is identi-
cally zero as expected.

We now proceed to solve for a,y, and o, following
Pant’® and Kalinowski and Kunstatter.® The only nontrivial
field equations which emerge from Eq. (2.6) in the special
case we are considering are {see Refs. 8 and 13 for the explicit

forms of R, ):

R\(I') = 8T, (3.8)
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Ill. STATIC SPHERICALLY SYMMETRIC SOLUTION

The most general static spherically symmetric form of
the metricg,,, is'’

—alr) 0 0 ol7)
_| © =Bl Sf(r)sin 6
i I _f)sind —Brsinre o 'Y
—alr) 0 0 7
and the determinant / — g is
V=g =lay—o")""}B% + 7' sing. (3.2)

For simplicity, we will consider only the case f=0. The
implications of this restriction are discussed at the end. Fur-
thermore, we will assume that the magnetic field
B (r) = F,3 = 0 s0 that the only nonzero components of F,,,
are F\, = — F,, = E(r). By solving Eq. (2.8) we find

E(r)= QBlay — 0?2 /(B* + 2419, (3.3)
where Q is a constant of integration. Eq. (2.7) can also be
readily solved to yield

o/ ay —w?) =1%/87%, (3.4)
where /* is a new constant of integration which acts as a
source for the skewon field g, ;. The sign of / * is determined
to be positive by the hypercomplex Hermiticity of the met-
ric. The choice /* < 0 yields the complex theory (/> = — 1).
{See Ref. 2.) With the aid of Eqgs. {3.3) and (3.4}, the stress
energy tensor T, can be put in the following simple form:

0 of [Pl —44) = b*1/(* + b %)}

0 0 15
r? sin’ @ 0 ’ (3-3)
0 it = b/ +6%)
|
Ro,(I) =87 T,,, (3.9
R () = 87T, (3.10)

Moreover, the generalized Bianchi identities imply that only
two of the above are independent. Taking the linear combi-
nation

(1/a)R,; + (1/7)R4s =0, (3.11)
yields

layy _ —4( I* ) 312

@) r \I*+7) (3-12)
which implies that

(ar) =N{1 + 1%/ (3.13)

The constant of integration N in Eq. (3.13) must be set to
unity in order to recover the Reissner—Nordstrom solution
in the large r limit. Substituting Eq. (3.12) into Eq. (3.9) gives

3 0P

—(ra Y=1—4gp—=——, {3.14)
or ( ) (*+5?
which can readily be integrated to give
a 'n=(1—-2M/r+47Q?f(r)/r), (3.15)
where
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! 1o P —2rb+b?
42b P+ \2rb+b?

+ —2‘/15( tan~ 1(2—’7—5;/5—1’)

+tan™ (2_}27@))

In Eq. (3.15), M is the usual constant of integration which, in
general relativity, provides the source for the asymptotic
gravitational field. This completes the solution, since the ex-
pressions for g,, = y and g(;,; = @ follow from Egs. (3.4) and
(3.13). It is straightforward to verify that the third, as yet
unused equation

1 1 87 87
—Ry——Ruy=—T,——T,
a ¥ a 14

fin=

(3.16)

is identically satisfied. Moreover, when A = 0 the above so-
lution reduces to the one found by Moffat. '

We now examine in some detail the remarkable proper-
ties of this solution. First, we note that Eqgs. (3.3), (3.4), and
(3.13) yield the following expression for the electric field:

E(r)=Qr/(r'+b"%. (3.17)
Here E (r) is clearly nonsingular everywhere and is zero at
r = 0. Moreover, E (r)—Q /7* as — w0, so thatit is asymptoti-
cally a Coulomb field. The effective charge density, as de-
fined by Eq. (2.11), is

4m — g plr)=J %, =sin 6 [4Qrb*/(r* + b*?], (3.18)
which yields the following conserved charge:

f: =2 plridrdo dé = 0.

Thus, the total electric charge Q is precisely equal to the
spatial integral of the effective charge distribution.

Next let us examine the properties of the function f(r),
as defined by Eq. (3.16). In particular, we note that

(3.19)

lim f(r) = 0. (3.20)
r—0
Moreover, in the limit that »— o,
1 1
f—2——-=+0 (—) (3.21)
22b r r

We now find the remarkable result that by setting the source
M of the singular gravitational field to zero, we have a solu-
tion for @' (r) of the following form:

a’'lin=1- 417Q2f(r)/r), (3.22)
such that

lime~Yr) =1, (3.23)

r—0
and

. _ 2M 47Q? 1

lima 'r)=1-—-"+2L 4 = o(—), 3.24

Lim a™(r) otz 105 (3.24)
where

M =472 () _ Q7

2 V2b
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Thus a ~ '(r) asymptotically approaches the Reissner-Nord-
strom solution with charge Q and mass M, which is a fixed
function of @, /, and A. It is interesting to note that the positi-
vity of the mass is not imposed by hand, but follows from the
fact that the constant of integration M in Eq. (3.15) was fixed
to be zero so that @ ' (r) would be nonsingular.

We now calculate the conserved stress energy density
associated with the matter Lagrangian 7,

V—gTi=I —gg* Ty, +V —28"*T,u)
=1Q%sin0/(* + b*). (3.25)

This is again nonsingular everywhere and approaches the
Einstein-Maxwell value (} Q ’sin 6 /7%) as r—. Further-
more, the integral of the energy density is

2
f\/ —g T4 drdfde = i’%f(w)
=M,. (3.26)
The Newtonian mass M, seen at infinity is precisely equal to
the total electric field energy.
Although the solutions presented above have many fea-
tures in common with Wheeler’s geons'® and with the solu-
tions in the nonlinear Born-Infeld electrodynamics,'® they

are not completely nonsingular. In particular, we have from
Eqgs. (3.4), (3.13), and (3.22):

olr)=JI%/P,
and
Ar)= (1 — 4xQ[f(ri/r])(1 + 1*/F), (3.28)

so that at 7 = 0, g, and g,, have //r* and /*/r* singulari-
ties, respectively. Nonetheless it is remarkable that the elec-
tric field and stress energy density are finite everywhere.
Moreover, recall that for simplicity we have set
81231 =/ (r) = 0. When this restriction is relaxed, f appears
everywhere in the field equations in the linear combination
(B? +f?). It is therefore likely that completely nonsingular
solutions do exist in which the skewon singularity (/2/7%) is
replaced by an expression of the form / 2/(r* 4 f£?). These so-
lutions are currently being investigated.!’

(3.27)

IV. THE NONSYMMETRIC KALUZA-KLEIN THEORY

Although the Kaluza-Klein extension of NGT was
first considered by Moffat,'® the Lagrangian we will consid-
er is due to Kalinowski.” In particular we wish to examine
the relationship between the solutions presented above and
analogous solutions® in the nonsymmetric Kaluza-Klein
theory. Up to a factor of ( — 47) multiplying the matter
terms, Kalinowski’s Lagrangian is’

LK = ?#VR/;V(W) + 41TV — & (H #VF‘MV - z(g[”V]F,uv)z)y
4.1)

where H #'=g#g*"H ,, and H,, is assumed to be an anti-
symmetric “polarization” tensor given in terms of g,,, and
F,, by

gtﬁﬁgy‘s H‘ya + gaﬁgéyHﬂy = 2ga6g6YFﬂy'
Note that F,, = H,, wheng,,, = 0.
In order to derive the field equations we must vary the

(4.2)
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Lagrangian with respect to the independent fields g**, W,,,
and 4,,. The variation of H,,, is implicitly determined from
og*” and 64,, by Eq. (4.2). The field equations which result
from this variation (see Appendix) are

R#V(W)—%gWR(W)=87rT,’fV, (4.3)

2, =0, (4.4)

( /—‘_g H ,uV)’v - 2(?l#v}g[aB]Faﬁ)’v, (4.5)
where

TX =—(g"Hy H,, —28'"F,;F,,)

+ 38 \HPH, ;s — 28" 'F, 5)+1J,., (4.6)

and J,, is the contribution to TS, from (6H,,,./6g""):

Jyv = Ha,uHng[aﬁ] —4Ha;LH‘r£gTangg[EB]' (47)

Note that J,, = 0 when g,,.; = 0, as expected. Moreover,
g"J,, =0sothat T fv is traceless. In general, however, J,,,
does not appear to be zero and may contribute to the field
equations. Note that Eqgs. (4.3)-(4.7) differ from those in Ref.
7 and subsequent references by a factor of 2 on the right-
hand side of Eq. (4.5) and the inclusion of J,,, in Eq. (4.6).
Presumably the variation of H,,, was not properly taken into
account in those references.

In the static spherically symmetric case with only elec-
tric field present, it is straightforward to show thatJ,, =0,
and H #** = F *. Thus Eqgs. {4.3)-(4.6) reduce precisely to
Egs. (2.6)—(2.9) but with A = 2. The only aspect of the cor-
rected field equations which is relevant to the solution
quoted in Ref. 8, is the extra factor of 2. When this correction
is taken into account, the solution is seen to be a special case
of the family of solutions given in Sec. Il above, with A = 2.
Most of the interesting features quoted in Ref. 8 are therefore
correct. The only significant modification is that with the
corrected field equations, the Newtonian mass is exactly

equal to the integral of y — g T*,. In Ref. 8 these quantities
incorrectly differed by a factor of 4.

V. CONCLUSIONS

We have shown that a one-parameter family of ex-
tended gravitational Lagrangians containing nonlinear
skewon-photon couplings admits exact static, spherically
symmetric solutions with remarkable geon-like properties.
As long as the parameter A is positive, the electric field,
charge density, and energy density in these solutions are all
nonsingular. Moreover, the solutions behave exactly like the
Reissner—-Nordstrom solutions at spatial infinity, with
charge and mass precisely equal to the integrated charge and
stress-energy densities, respectively. In this sense the solu-
tions describe “mass without mass” and ‘“‘charge without
charge.”

The particular choice of photon-skewon coupling was
inspired by the nonsymmetric Kaluza-Klein Lagrangian of
Kalinowski,” although the present Lagrangian is somewhat
more general, due to the arbitrariness of the parameter A It
is interesting to note that the nonsingular properties of our
solutions do not depend on the particular value of 4, only on
its sign. Although it is a triumph of the Kaluza—Klein ansatz
that it uniquely predicts such a term in the Lagrangian, the
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form of the coupling could also have been derived from more
general arguments; namely requiring coordinate invariance,
second-order differential equations, and a real Lagrangian.
In fact, one can also add another term of the form
4y — gg»*1 g"#'F,, F, 5, which also obeys all of the above
criteria. The effects of such a term are currently under inves-
tigation.

Much work remains to be done before the physical sig-
nificance of these solutions is known. It is important to dis-
cover whether completely nonsingular solutions exist, and
whether they are classically stable. This would have impor-
tant consequences for the possible existence of quantum par-
ticles based on these soliton-like solutions. It would also be
interesting to discover whether the nonsingular aspects of
the solution are a manifestation of topological properties of
the full nonlinear theory. Finally, the consequences of the
photon-skewon coupling for photon propagation should be
investigated in order to place experimental bounds on the
parameters in the theory. These questions will be addressed
in future work.
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APPENDIX: KALUZA-KLEIN FIELD EQUATIONS

We derive the field equations which result from varying
L, in Eq. (4.1) with respect to g#* and A4,,. The “matter”
Lagrangian of interest is

Ly=4m| —g(H *F,, —2g""'F,,)),

where H “'=g™g”'H, 5 is given implicitly by Eq. (4.2).
Contracting Eq. (4.2) with g"7g  yields

(A1)

ZFBu :HB# +Kﬁ/tyaH7a’ (A2)
where we have defined
Kp5,"°=8558,,8"8""- (A3)

Notethat K, " = 8,75, when g = 0. Next we multiply
Eq. (A.3) by H % to find that

Fy H % = Hy, H ™, (A4)
so that
8L, =4n8[V —g1(H *'H,,, —2(g"F,,))

+4my —gb(H *’H,,,) — 8wy — g&{g["B]FaB)Z.
(AS)
We now take the variation of Eq. (A2) and multiply by H #:
2H #5F,, = H #8Hy,, + H #K,,"6H,,
+ 6K, " H PH,. (A6)

The key to solving the variational problem is to note that
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H "8H,, + H "K,,"6H,,
=H ™8H,, + H,,8°¢"K,,, "6H,,
=H.g%""6H,, + Hp,g"’g""6H.,
=68(H #Hp,) — Hy, H_.5g°8™").
Using Eqgs. (A6) and (A7), 8L,, reduces to

(A7)

8Ly = — 27 2, 68" (H*PH,, 5 — 28'*°'F,, ;)
—|— 817'\[ —g H B“(SFBH + 877'\/ —‘g HﬂﬂHergEBSgT‘u

— 47y —gH ""‘Hya 0Ky, ™
— 87 —g8(g"'F,,)?, (A8)
where we have also used the standard relation
8\1 - = - %g,uvcsg#v'
The only remaining task is to calculate
H ﬁ"HméKﬁ#”“

= HerHya gEBgT#((Sg&B gp,u g‘r&gap + géB‘Sgp,u gy5gap
+ 855 80878 " + 85 8, 87°68°7)
=2H_H, g"6g" —2H_H,, g g°85508°°. (A9)
In Eq. (A9) the identity olg"g,,)=0

=g"6g,, + 0g"'g, , was used. By rearranging dummy in-
dices and using g”° = g% — 2g'%"1 we find that
H?H 6K;,"=4H,  H, g'“6g"
- 4H,u-rHyagaTg6v g[YtS]ag#V
=J,og" (A10)

Finally we have
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— {8/ —gHz H,, g°° — 16m/ —g(g'*#'F,,

- 217\4 —gg,uv(HaﬁHaB - 2(g[aﬁ]Fa5)2)

— 4m], Yogr + {8my —gH *

— 167 —gg'*#1F, sg*" }8F,,, (Al1)
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Massless fermions and Kaluza-Kiein theory with torsion
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A pure Kaluza—Klein theory contains no massless fermion in four-dimensional theory. We
investigate the effect of introducing torsion on the internal manifold and find that there are
massless fermions. The hope is that given an isometry group the representation to which these
fermions belong is fixed, in contrast to the situation in Yang-Mills theory. We show that this is
indeed the case, but the representations do not appear to be the ones favored by current theoretical
prejudice. The cases with parallelizable torsions on a group manifold as the internal manifold are

analyzed in detail.

PACS numbers: 04.50. 4 h, 14.60. — z, 02.20. + b, 02.40. + m

I. INTRODUCTION

One of the stumbling blocks facing theorists trying to
treat Kaluza—Klein theory'> as the theory of the world is
the difficulty of obtaining low mass fermions.**

Consider a Kaluza-Klein theory’ based on M *x B,
where B is an n-dimensional compact manifold with an iso-
metry group G. The resulting theory contains Yang-Mills
fields transforming according to the gauge group G. The
length scale [, of B is of the order of the Planck length
divided by the gauge coupling constant. It is well known by
now that if the {4 + »)-dimensional theory contains a mass-
less fermion field, then the resulting four-dimensional theory
contains an infinite spectrum of fermion fields whose masses
are determined by the eigenvalues of the internal Dirac oper-
ator /™) appropriate to B. Since the natural mass scale is
set by the huge Kaluza-Klein mass M,, =/ ;. ', the observed
quarks and leptons must correspond to the zero eigenvalue
of ig"™.

The difficulty is that if B is a homogeneous space
B = G /H, then i&""™ has no zero eigenvalue. The reason is
as follows.” For G /H (with standard metric) one can show
that the scalar curvature R is positive. On the other hand, the
square of the Dirac operator may be evaluated>® to be

— D? + 1 R and is therefore the sum of a non-negative oper-
ator and a positive operator.

One possible way around this difficulty involves intro-
ducing explicit gauge fields not related to the metric. If the
ground state of the theory is such that these explicit gauge
fields assume a topological configuration on B, then zero
modes exist for the internal Dirac operator.”®

In this paper we investigate an alternative possibility,
that of introducing torsion on the manifold B. This means
that we treat the connection w®,. on B as an object unrelated
to the Vielbein e°;. (Our convention is that of Ref. 5. See also
Appendix A.} Since the internal Dirac operator, which we
identify henceforth as the mass operator M, is given by

M =i@"™ = jye” 3, — (i/V0°,. %), (1.1)
one might easily imagine that with some choices of w one can
find zero modes of M.

We show below that the introduction of torsion indeed
allows the existence of numerous fermion zero modes. Un-
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fortunately, there are an equal number of left- and right-
handed zero modes. This is a problem which has cropped up
repeatedly in contemporary particle theory.® To demon-
strate that this is generally the case, one would have to show
that (1) the Atiyah—Singer theorem is unaffected by the in-
troduction of torsion and (2) torsion does not change the
Pontryagin number of a manifold. (A partial discussion of
these points will be given in Appendices B and C.) Thus, our
discussions would appear to be irrelevant for the real world
unless we suppose that the fundamental interaction at the
preon level is left-right symmetric and that the left-right
symmetry is broken by some as-yet unknown mechanism.
Nevertheless, we feel that the effect of torsion is worth inves-
tigating in some detail.

One class of manifolds with torsion consists of the par-
allelizable manifolds defined by Cartan and Schouten.!® The
Cartan—Schouten program is a particularly restrictive way
of introducing torsion on certain manifolds so that the Rie-
mann curvature tensor vanishes. The preceding discussion
makes it suggestive that zero curvature might allow M to
have zero modes. Compact Lie groups form a wide class of
parallelizable manifolds and we will focus on group mani-
folds in this paper. Not surprisingly, we are led, after some
work, to face certain equations endowed with a rather neat
algebraic structure which may be of some mathematical in-
terest in themselves.

We have solved these algebraic equations. It turns out
that normally fermion zero modes form an even number of
“families,” but the number of zero modes escalates rapidly
as the rank of the group increases. For example, for SU(5),
there are four “families” of zero modes in the representation
1024.

After our work was completed, we learned that Orzalesi
and collaborators'! had launched an extensive program of
studying torsion in Kaluza-Klein theory. In particular, Des-
tri, Orzalesi, and Rossi (in Ref. 11) were the first to point out
the relevance of torsion for the existence of Dirac zero modes
and have studied the case of parallelized group manifolds.
Their analysis, while employing a slightly different formal-
ism, is essentially the same as ours, but they do not determine
the representation in question for a general simple Lie group
as explicitly as we do. Also we give a method for reducing
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this representation and point out the appearance of the repe-
titive structure in this reduction. They also studied the dyna-
mical basis for compactification with torsion which we do
not do. For an alternative application of parallelizable tor-
sions in Kaluza-Klein theories, see Ref. 12.

In Sec. II, a brief review of the Cartan-Schouten pro-
gram is given. In Sec. III, we work out the reduction of fer-
mions in Kaluza—Klein theory. Putting together the materi-
al from these two sections, we find in Sec. IV that the search
for fermion zero modes leads us to some interesting group
theory problems which we solve in Secs. V and VL.

1. TORSION ON GROUP MANIFOLDS

A manifold is said to have torsion if the connection 1-
form &°, is treated as independent of the Vielbein 1-form e°.
Define the torsion two-form by

T°=de" + 0°,e’. (2.1)
Without torsion, 7% = 0 and so @, is determined in terms of
€°. The Riemann curvature is given in any case by

R, =do’, + o°.0%. (2.2)
We focus our attention on compact Lie groups G. The

points of the manifold are associated with group elements g.
At a given point, one defines the Vielbein by

g~ 'dg =3 iA/2)".

a

(2.3)

We normalize the generators of the Lie algebra of G by

/1“ Ab -abc/ic
y | =1 —
[2 2 4 2

(We have chosen the Cartan metric on the group to be just
& “ so that we need not distinguish between upper and lower
group indices.) Differentiating Eq. (2.3), one finds the Car-
tan—Maurer equation

de® =1 f*ebe". (2.5)
Without torsion, we see by referring to Eq. (2.1) that the
Cartan-Maurer equation implies @*® = ] f“*¢°. It is natural
and pleasing that the connection »* is related to the struc-

ture constant f°*°. We now take a “physicist’s” constructive
approach to parallelizable torsions. Adopt the ansatz

abc __ abce,
@ 1 Kfe,

— 2

(2.4)

(2.6)
this defines a one-parameter family of possible connections.
A simple computation using Eq. (2.2) and Jacobi’s identity
gives

R =1K(l — 1K) fofees. (2.7)

By definition, a parallelizable connection leads to a van-
ishing curvature tensor. This yields two solutions:

K=0, o =0, 7= +1, (2.8)

K=2, o =f r=_-1. (2.9)
The quantity 7 specifies the corresponding torsion by

Te=}r, abeghge (2.10)

Referring to Eq. (A5)in Appendix A, we determine the
Christoffel symbol to be

Iy =e,*d,e;" inther= + 1 case, (2.8')
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and
(2.9

Note that since w°, transforms as a connection and not
as a tensor I-form, the relations in Eqs. {2.8) and (2.9) are
clearly specific to the Vielbein basis defined by the left-invar-
iant one-form in Eq. (2.3).

The preceding is a simple realization for group mani-
folds of the Cartan and Schouten theory of parallelizable
connections. They posed themselves the following problem.
Given a Riemannian manifold with a metric g; and a Chris-

I;*= —(d%%e, inther= —1case.

0
toffel symbol I ;* constructed from the metric, is it possible
to find a tensor S, [j" such that the following three conditions

©
hold (defining I";*=I" ,* + S,*)?
0
(1) The geodesics for I" are the same as those for I".
(2) The covariant derivative of g;; relative to I” vanishes.
(3) The curvature tensor constructed from g; and I‘ij"
vanishes.

It is easy to see that conditions (1) and (2) imply that S,
is totally antisymmetric. We understand that Cartan and
Schouten prove a nontrivial theorem stating parallelizable
manifolds (i.e.., those allowing parallelizable connections)
besides Euclidean spaces are group manifolds and the seven-
sphere §7. To appreciate this last statement consider simply
setting the connection one-form w®, =0 on an arbitrary
manifold. This certainly insures R ¢, = 0. However, in the

Cartan-Schouten construction, one replaces a torsion-free
@
connection @°, by

(Y]

oy = +1°, (2.11)

where 4 ?, is required to be a tensor one-form. By simply
0

setting 4 ¢, = — (cc;“b one defines, in a coordinate-dependent

way, a4 ?, (and therefore »®,) which is not globally defined

(i.e., singular somewhere]j on the manifold, except for those

named in the Cartan-Schouten theorem.

We return to our discussion of group manifolds. There
exists a beautiful theorem that on group manifolds the Viel-
bein defined in Eq. (2.3), which is obviously left-translation
invariant, gives a set of Killing vectors

§i=¢el.
This can be easily proven in the following way.

Written out in component form, the Cartan-Maurer
equation states

g6l — 3, el = freler.

(2.12)

{2.13)

Multiplying by e“efe®* we find that the Killing vectors de-
fined in Eq. (2.12) satisfy Lie’s equation

é—aiai gbj_ é—biaigaj: _ fabcé_cj-

It is now easy to show that the metric g7 = e*¢% admits the
& ¢ as Killing vectors. One verifies, by using Lie’s equation,
that the Lie derivative of the metric along a Killing vector
vanishes:

(2.14)
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8= £(0, &) — 0, 7187 — (0, £9) 8% =0.
(2.15)

[Incidentally, a group manifold may be thought of as
the symmetric space G X G /G, where G, is the diagonal
subgroup of G X G. The isometry could be effected either by
left or by right multiplication of group elements, corre-
sponding to the two choices of writing g~ 'dgordgg'in
Eq. (2.3). It is well known in mathematics that the 7 = + 1
connection in the right-invariant Vielbein corresponding to
dg g~ ! has the same form as the 7 = — 1 connection in the
left-invariant one, and vice versa. So we need to do the analy-
sts only with the left-invariant Killing vectors.]

ill. REDUCTION OF FERMION FIELD

We discuss here the reduction of Dirac fields in Ka-
luza-Klein theory with torsion. The discussion is for a gen-
eral internal manifold B with an isometry group G.

Start with the Dirac Lagrangian in (4 + n)-dimensional
theory:

L = WiyH, — (/M0 dap) V=Wiy* D, ¥. (3.1)

Our notation is the same as in Ref. 5. Briefly, Greek
indices, u, v, ..., @, B... refer to the “external” four-dimen-
sional space while Latin indices /, j,...a,b,... refer to the “in-
ternal” space. The “hat” notation is used when we have to
refer to the entire (4 + n)-dimensional space. We also find it
convenient occasionally to refer to the “internal” coordi-
nates x' collectively as y and to the “external” coordinates as
X.

Fortunately, if we are interested only in dimension-4
terms in the four-dimensional theory, we do not have to
compute every component of @z, . By a dimensional argu-
ment we can see that we can effectively set the connection in
the Vielbein basis to be

A

int)

WDape ’wszbc 4
- {ext)
Doy Doy 3.2)

Dapa—Caley € — £19; €A el
Here £ | denotes the Killing vector corresponding to the gen-
erator of G labeled by the index 7 and 4 ;, denotes the corre-
sponding gauge potential. We have chosen the Cartan metric
to be flat o« 5.

The Dirac field & transforms asa spinor under the local
group SO(4 + n) [or SO(3 + n,1)]. Recall that the theory of
orthogonal groups is such that the spinor index carried by ¥
factorizes into a spinor index for SO{4) and a spinor index for
SO(n). The gamma matrices factorize accordingly:

Y =y"X7, (3.3a)
= 1X7 (3.3b)
Vs = ¥VsX Vs (3.3¢)

Note that the presence of ¥5 in Eq. (3.3a) but not in (3.3b) is
necessary in order for {y%,5°} = 0. In Eq. (3.3c) the notation
is such that the three ¥ denote the y; matrix for the Clifford
algebra corresponding to SO{4 + n), SO{4), and SO(n), re-
spectively.

Combining Egs. (3.2) and (3.3) we find that
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WD oy D 4+ D™ — yres 41 T, (3.4
Here 2/ and 2™ are the covariant derivatives (not in-
cluding the Yang-Mills potential) constructed out of &*
and o™, the “external” and “internal” connections, respec-
tively. The eigenvalues of the operator M =iy’ 2™ deter-
mine the fermion mass spectrum in the resulting four-dimen-
sional theory and so M may be identified as the mass
operator.

The operators

IT,=¢£]0, + (i/4e.les0,6 . — £, e,) (3.5)
are very interesting. We see that if Eq. (3.4) is to describe

correctly the coupling of the Yang-Mills potential to fer-
mion fields, we must have

[Tr’Ts] :ifrst 7, (3.6)
[7.,M]=0. (3.7)

The operators 7, have been discussed previously by
Wetterich'? and by Tanaka.'* The derivation given by Tan-
aka is different from the direct approach followed here and
offers additional insight into the origin of T,. We continue
this discussion paying special attention to the case with tor-
sion.

Since we want to add torsion only in the internal mani-
fold, among the components of @,; in Eq. (3.2) none other
than w,,, should be changed, and the change of w,,, is sim-
ply to add torsion in w'3Y. The operators 7', given by Eq. (3.5)
are unchanged by addition of torsion only in the internal
manifold. However, if we express 7, in terms of the covar-
iant derivative in the internal space, the expression differs in
the cases with and without torsion. Recall that in the case

without internal torsion, we have
iT,=£ L0, — (i/8)w,,,0°°) + (i/4)eles £, 0™, (3.8)

where £ 7, is the usual covariant derivative of £ . But, if

there is internal torsion, using Egs. (A4) and {A6) of Appen-
dix A we can rewrite T, as

iT, = €10, + (i/4)0™

X [e:zel{(vj & — Ty gf) — Wopk 51:]’ (3.9)

where
Vjé—i:aj§£+rﬁcj§r’f' (3.10)
According to Egs. (3.6) and (3.7) the eigenmodes of M
corresponding to a given eigenvalue furnish a representation
of the group G. One defines'* spinor harmonics U { y) by the
equation

(T, )un U M(p) = (VUG (). (3.11)

Here N denotes a spinor index (of the internal space), o speci-
fies the representation of the group G, and X' labels the com-
ponents of the representation 0. We write the representation
matrix in the representation o as ¢!\, Furthermore, since T,
commutes with ¥ of the internal space, the harmonics can
be chosen to be chiral eigenstates

ysUH) = 4 U, (3.12)

On the other hand, M anticommutes with y5 and so takes
UFlintoU' ™%
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MU' — o ytoF), (3.13)

We can now expand the field ¥ as a sum of the spinor har-
monics over the internal manifold:

W1+) — z { 1//10'+)K(x)U10+)K(y) + ¢(av)K(x)U(a—)K(y)}.
" (3.14)

The coefficients 1//” *){x} in this expansion are the fermion
fields of the four-dimensional theory. The expansion in Eq.
(3.14) is for a right-handed field

ys W = 4 @i, (3.15)

The correlation of chirality in Eq. (3.14) is dictated by Eq.
(3.3¢).

IV. FERMIONS ON GROUP MANIFOLDS

Here we specialize the discussion of the preceding sec-
tions to group manifolds. In this case, the operators T sim-
plify to the form

T = —i(£Y9, — (i/4)0"f ™)
=X+7Y“ (4.1)
(Since the number of group labels is now equal to the dimen-
sion of the manifold, we identify the indices 7, 5, ... as a, b ...,
keeping in mind that 7° is independent of the presence of

torsion.)
We find it useful to define the operators

XaE _ I§ af aj and YHE _ ‘%chfabc’
as indicated in Eq. (4.1). The presence of Y “ in this equation
reminds us that under a Killing displacement one has to turn

the spinor indices on a Dirac field. We note the algebraic
structure

[X",Xb] — IfabCXC, (42)
[X4Y?] =0, (4.3)
[Yer®] =if*Ye, (4.4)

which follows from Lie’s equation and from Jacobi’s identi-
ty. This insures the correct commutation relation for 7°.

Clearly, if one were to reduce scalar fields in Kaluza—
Klein theory, X ¢ would play the role of T°. Scalar harmon-
ics are defined by an equation analogous to Eq. (3.11):

XV K ) = (¢ Ky ), (4.5)
[For G =S0(3) the ¥ (y)’s are just the standard rotation
functions.] Similarly, we can represent the algebra as real-
ized by the Y “’s [Eq. (4.4)]:

(Y )y WK = ()8 K (4.6)

We learn from Eqs. (4.1)—(4.4) that we have here a prob-

lem analogous to the addition of angular momentum in
quantum mechanics. We can decompose

UKy = Z C(0K;0,K,0,K))
KoK,

X V(an)K|(y)W(;Jz)Kz‘ (4'7)
Here C denotes generalized Clebsch-Gordon coefficients.
The dependences of U on the spinor index and on the coordi-
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nates of the internal manifold separate.
The mass operator

M = iy(e” 3, — (i/ B 1p. 0™) (4.8)

depends on torsion. Referring to Egs. (2.8), (2.9), and (2.12),
we see that for group manifolds M has the elegant algebraic
form

M= —yX°+ iKY, (4.9)
where K is a real parameter as defined in Eq. (2.6). For the
case of no torsion, K=1. For r= + 1, K=0, and for
7= — 1, K = 2. The fact that M commutes with T ° follows
from the algebraic equations, Egs. (4.1)—{4.4), and from the
fact that 9 transforms in the adjoint representation:

[T ) = [Yo ] = if - (4.10)

We know from a general theorem that for K = 1, the
torsion-free case, M has no zero mode. As K varies over the
real line, zero modes may appear. In particular, consider the
two parallelizable cases. The 7 = + 1 case is easier and will
be discussed first.

Forr= + 1, M =iy°£“ d,, and so it follows immedi-
ately that there is one class of zero modes for which U( y) is
independent of y. To put it more formally, we set o, in Eq.
(4.7) to be the trivial representation so that we simply have to
solve Eq. (4.6). This group theoretic problem is treated in the
next section. It can be shown that such zero modes are the
only ones, because

MU= (X*+ YU — (Y*PU =0,

and because of the property of the Casimir invariant.

(4.11)

V. A GROUP THEORY PROBLEM

We now address the group theoretic problem encoun-
tered in the last section. We will phrase the problem in some-
what more general terms in order to clarify the problem.

Given a Lie algebra G, let 4 (G ) = SO(N ), where N =
the number of generators of G. [With the choice that the
Cartan metric can be just the Kronecker delta, as in Sec. II,
the elements of SO(N ) are automorphisms of G.] Let the gen-
erators of SO(N) be represented by the matrices o,
b,c = 1...N, in some representation r. Define a set of matrices
Y, by

Ya = _‘ltj;bcabc' (51)
Then, one can verify, using the Jacobi identity, that
[Ya’Yb] ziabc Yc‘ (52)

Thus, Y, furnishes a representation of G. The definition of
Y, [Eq. (5.1)] defines a map from the set of representation of
A (G)into the set of representations of G. We will refer to this
map as a projection and write P (r) as the representation of G
corresponding to a representation r of 4 (G ). In the last sec-
tion we are specifically interested in the projection of the
spinor representation s of 4 (G} = SO(¥ ) [or, strictly speak-
ing, of the spin (¥ ) covering of SO(V )]. We want to determine
Pis).

[Our knowledge of the mathematical literature is rather
limited. However, as far as we can determine by cursory
discussions with a couple of mathematicians, our treatment
isnot in the standard mathematical literature. Partial results
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have been given for the special cases SU(2), SU(3), and SU(5)
by Destri ez al.'']

One can easily prove a series of fairly obvious theorems.

Theorem 1: The projection of a reducible representation
is reducible. The projection of an irreducible representation
may or may not be reducible.

Theorem 2: P(r, X r,) = P(ry) X P(ry).

This theorem allows us to determine the projection of
any representation of SO(/V) once we know P (s).

Theorem 3: The projection of the vector representation
of SO(N) is the adjoint representation of g.

For example, for G =8SU(3), 4(G)=S0(8), and
P(8)=8. Theorem 2 allows us to find, for instance,
P(28) =10+ 10+ 8. The reducibility of P (28) illustrates
Theorem 1.

Clearly, the dimension of P (r) is the same as the dimen-
sion of r. This provides one clue to determining P (s): the
dimension of P (s) is equal to an integral power of 2. Inciden-
tally, this proves rather indirectly the nonobvious theorem
that any Lie algebra has a representation with dimensions
equal to an integral power of 2.

We can exploit the fact that we know the explicit form
ofo,, = (i/2) [ 7.7, ] for the spinor representation to evalu-
ate the quadratic Casimir invariant for P (s):

Y, Y, =(%/16) fop fuae VsV VaVe
=§f(‘zbc.fabc‘ (53)

We used Jacobi’s identity and properties of the gamma ma-
trices. The fact that ¥, Y, comes out to be proportional to
the unit matrix proves another theorem.

Theorem 4: P (s) is either irreducible or a single irreduci-
ble representation repeated. (The number of repetitions is a
power of 2.)

These considerations allow us to determine P (s). After
all, for a given G, there are not many representations of G
with dimensions equal to 21V/?1/2* * 1 with k a non-negative
integer. (Here [V /2] is the smallest integer not less than N /
2.) It turns out that we have to express our solution using the
Dynkin language. Our notation is the standard one as may
be found in Refs. 15 and 16, for instance.

Recall that a representation is characterized by its high-
est weight A. Label the representation by A. The roots of the
algebra are denoted by ;. Let & be half of the sum of the
positive roots:

1

b=— 3 a. (5.4)
2 positive
roots
There exists a theorem that'®
(5.5)

2(6,a)) = (a;,a;).
The scalar product between two vectors « and § is given by
(@ B)= zaiGU B (5.6)
i
where the Dynkin metric G, is listed in tables.'* The ; are
the components of a in the Dynkin basis. The number of
components is equal to the rank of G. Also, recall the famous
Weyl formula for the dimension of a representation A:
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(A +8,a;)

dim(A ) = o]

positive
roots

The quadratic Casimir invariant of the representation A is
given by

(5.7)

C(A)=(A,A + 26). (5.8)
In this language, we can write Eq. (5.3) as
C(A (P(s))) = } dim{adj)C (adj). (5.3

Here ““adj” refers to the adjoint representation. We have to
find a representation A which satisfies Eq. (5.3').

We assert the following.

Theorem 5: The highest weight of P (s) is 8.

From Weyl’s formula [Eq. (5.7)] we see immediately
that

d1m(5 ) — 2(number of positive roots)’ (59)

which indeed is a power of 2.
To check Eq. (5.3') we evaluate

C(8) = 3(5,5) (5.10)

using Eq. (5.8). Now, according to the theorem in Eq. (5.5), 6
has the elegant form

8=(1,1,1,...,1)

in the Dynkin basis, and so

(5.11)

Ci8)=3% G, (5.12)
LJ

is just the sum of all the entries in the Dynkin metric. Unfor-
tunately, the Dynkin metric G differs from Lie algebra to
Lie algebra and so we have to evaluate C (5) separately for the
different cases in Cartan’s classification. Furthermore, A,
has different forms for different algebras and the evaluation
of C (adj) also has to proceed case by case.

Before we go to the general evaluation there are some
simple cases for which the preceding formalism is not neces-
sary. For G = SU(2), 4 (G ) = SO(3), we can use the explicit
formo,, = — €, 7. for the spinor representation to evalu-
ate Y, = (1/2)r, so that P (s) = 2. The projection in this case
obviously just expresses the local isomorphism between
SO(3) and SU(2). For G = SU(3), 4 (G ) = SO(8). After some
thoughts, one finds P{s) = 8. According to Theorem 3, P
(vector) = 8. This is consistent with the famous automor-
phism of SO(8) in which the two 8’s of spinor and the 8 of
vector can be transformed into each other. In fact, we can
exploit this automorphism to determine P(s}) in the first
place. Let o, and o, be the generators of SO(8) in the spinor
and vector representations, respectively. There exists a simi-
larity transformation

o, = Fal, S (5.13)

Multiplying by f,,. and summing over a, b we obtain an
explicit construction of P (s).
The general evaluation below uses Tables 7 and 8 in
Ref. (15):
4,8U, ) C)=}nln+1)n+2)
C(adj) = 2n + 2,
dim(adj) = n(n + 2);
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B,(SO,,.,): C(6)=4in2n—1)2n + 1),
C(adj) =2(2n - 1),
dim(adj) = n(2n + 1);

C.(8p2.): C(8)=4nn+1)2n +1),

Cladj) =2n +2,

dim(adj) = n{2n + 1);
D,(80,,):  C(8)=in(n —1)2n —1),

C(adj)=4n — 4,

dim(adj} = n(2n — 1);
G, C(6) =14, dim(d)= 64,

C(adj) =8, dim(adj)= 14;
F,: C(8) =117,

dim(6 ) = 16 777 216,

C(adj) =52, dim(adj) = 52;
Eg: C(8) =234,

C(adj) =24, dim{adj) = 78;
E;: C(6)=1197/2,

C (adj) = 36, dim(adj) = 133;
E;: C (6) = 1860,

Cfadj) = 60, dim(adj) = 248.

It is amusing to see that for all simple compact Lie groups the
irreducible representation & with the highest weight
(1,1,...,1) in the Dynkin basis satisfies the relation
C(8) = | N (adj)C (adj).

The repetition number, mentioned in Theorem 4, of the
irreducible representation § in P (s) is simply the quotient of
the dimension of s, the spinor on the group manifold, over
that of 8, namely 2!¥/?!/dim(8 ). Thus, here see the natural
emergence of something like family structure, with the num-
ber of families restricted to be a power of 2. For example, for
SU(5), the zero modes form four families of the representa-
tion 1024.

Thus, except for the lowest ranked groups, we obtain an
exceedingly large number of zero modes. For instance, for
F,, there are more than 16 million fermion zero modes! The
reason is clearly that the number of zero modes increases
exponentially in the number of generators in the group. We
find it extremely unlikely that these zero modes could corre-
spond to quarks and leptons. It is perhaps conceivable that at
some preon level the gauge group is small, SU(2) say. One
could also imagine a Kaluza-Klein theory with the internal
manifold SU(3) < SU(2) X SU(1). But the fermion representa-
tion appears to be incorrect.

We recognize that Eq. (5.3') is a necessary but not suffi-
cient condition. Thus, strictly speaking, we have only found
a candidate solution and we have not proved that our solu-
tion is the solution. However, it seems highly unlikely that
another representation exists with first the right dimension
(a power of 2), and second, the right Casimir invariant [Eq.
(5.3")]. In particular, for those groups in which tables exist,'’
one can easily verify that our solution is unique. We have not
bothered to try to complete the proof because unfortunately
these zero modes appear to be irrelevant for phenomenology.

VI. SEARCH FOR ZERO MODES

We now return to the other parallelizable case in which

7= — 1. The mass operator simplifies to
M = iy°T" (6.1)
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The equation for zero modes MU = 0 can then be written as
(v &ty U=0, (6.2)

with “and ¢ ¢ acting on the spinor and group indices, respec-
tively. (We suppress the index o.) Alternatively, regard U as
a (rectangular) matrix with a spinor index and a group index
and write the rather strange matrix equation

YUt =
(¢ is the transpose of t.)
A direct approach would involve using the harmonic
expansion in Eq. (4.7). The equation MU = O then gives an
equation involving £, ¢'* and Clebsch-Gordon coeffi-

cients.
Let us apply M to Eq. (6.2) again

VY e t4®) U=0=(1 ® t*+ 10" f* ® 1. (6.3)

We recognize the appearance of the operator Y, so that Eq.
(6.3) may be written as

(2Y, ® 1,)U=12U. (6.4)

Here ¢ is the second Casimir invariant of the representation
o which U transforms as. The discussion of the preceding
section on the property of Y, tells us that for a given group
the representation o, appearing in the Clebsch-Gordon de-
composition of U'” in Eq. (4.7) is determined {to be the one
with the highest weight § = (1,1,1,...,1)]. For a given o, the
representation o must appear in the direct product o @ o,*.
Alternatively, one can regard Eq. (6.4) as an eigenvalue prob-
lem determining the representation o to which the zero
modes, if any, belong. [Of course, one must still insure that
Eq. (6.2) is satisfied.]

For the simplest case SU(2) it is quite easy to prove that
there is no nontrivial solution. For SU(2), ¥, = 7,/2. We
“square” Eq. (6.4)

(1, ® L)1, ® L,) U= U=(10t>—7, ® t,)U. (6.5)
Using Eq. (6.4) again we find ¢ > = ¢ ? (1 — ¢ ?) which only has
the trivial solution #2 = 0. For groups larger than SU(2), a
similar, but not so simple, analysis'® can be made to show

that the only solution to Eq. (6.2) is that with # 2 = 0. There-
fore, in the 7 = — 1 case, fermion zero modes are singlets.

(6.2')

VII. CONCLUSION

We conclude that with the introduction of torsion, Ka-
luza—Klein theories can have massless fermions, but not
chiral fermions. Given a gauge group the fermion represen-
tation is determined. For parallelizable torsion, the repre-
sentation is enormous for any but the smallest gauge groups.
This is evidently related to the high dimension of group man-
ifolds. As one possibility, we may reduce the dimension of
the manifold by looking at a coset homogeneous space G /H
instead of G itself. For instance, for SO(10}, well known to be
a leading candidate for a group relevant to the real world, we
might look at S = SO(10)/SO(9). But unfortunately, S, is
not parallelizable in the Cartan-Schouten sense. Modulo
this difficulty, theories with spheres as internal manifold
look quite promising to us. On S,, the spinor is 16 dimension-
al. Thus, the fact that in SO(10) grand unification fermions
belong to the 16 may be explained in the Kaluza-Klein con-
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text. The geometry of the internal manifold may be reflected
in the fermion spectrum.

In general, one can introduce an arbitrary amount of
torsion, not necessarily just so as to make the Riemann cur-
vature tensor vanish. By varying the parameter K so that the
scalar curvature becomes negative, one may obtain, conceiv-
ably, massless fermions belonging to representations favored
by current theoretical prejudice. But one would then be hard
put to justify choosing that particular value of X.

These and other questions discussed here should be in-
vestigated further.

ACKNOWLEDGMENTS

Wethank L. Brown, P. G. O. Freund, and E. Witten for
helpful conversations and C. A. Orzalesi for correspon-
dences clarifying Ref. 11.

This work was supported in part by the U. S. Depart-
ment of Energy under Contract DE-AC06-81ER-40048.

APPENDIX A: CONNECTION AND TORSION

We briefly recall some elementary facts about differen-
tial geometry with torsion. Qur notation is essentially that of
Ref. 5 to which the reader unfamiliar with the subject may
wish to turn.

One defines orthonormal basis vectors e, and coordi-
nate basis vectors e; on the manifold. The Vielbein is defined
by expanding
(A1)

The connection and the Christoffel symbol are defined by
infinitesimal transport of the basis vectors:

e, =e.e,.

Ve, = —w,’e,, (A2)

Ve, =Ife,. (A3)
Combining Eqgs. (A1)—{A3) one finds

dies + IT'le, +w,"es =0, (A4)
which can be rewritten as a relation between I" and w,

Tk= —(de + o, e)e. (AS)

Recalling the torsion one-form is defined by T'° = de”
+ w°,e” we see that

rt-ri=rk (A6)
The Christoffel symbol I'}; is symmetric in its two lower
indices in the absence of torsion.

APPENDIX B: DIRAC OPERATOR WITH TORSION

In this appendix we discuss properties of the Dirac op-
erator with torsion to see more closely how the usual positi-
vity argument for the absence of zero modes breaks down in
this case. We will consider only the internal manifold.

The internal Dirac operator is

iDy=i'D, §=ive, (D, — i/40"w) Y. (B])
Here w,,; is a generic connection with torsion. Using Eq.
(A5) in Appendix A we can prove that

@.’(ngj) lﬁ = f‘@i"@j ¢,
ie, [¥/2,]=0. (B2)
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Here we note that the proper definitions for the action of &,
on both sides are not actually identical:
DD ) = (6 — (i/40™ 0 ) Vel D, ), (B3)
gi(@j Y) = (aiéf - Fjli' - (i/4)0ﬂbwabi 5})(‘@1( ¥)
(B3)
because of the difference in transformation property of (3’
X Z;y¥)and P, . Here I }; is the connection with torsion in
the coordinate basis.
From Eq. (B3') it follows that
[2,2,1= —ti/4)0"R,; — T5 D, {B4)
where T =I'j — I'k. Therefore by using Egs. (B2) and
(B4) it is easy to obtain
(D ) = { —8'9.9; +} OJjoﬂbRabij - (i/z)ajjngk} Y.
(B5)
The first term on the right side is still a non-negative opera-
tor even if &, has torsion in it,

f A"y Ve D, D, b

- J d" Wel D, WD, ¥) + (D, gND, ¥)

+18'T 5D, ¥}, (B6)
since the second and third terms in this equation vanish iden-
tically. However, both the second and third terms in Eq. (B5)
are not necessarily positive definite. Therefore, the addition
of torsion in the Dirac operator may lead to the appearance
of zero modes.
Incidentally, if there is no torsion, then the second term
in Eq. (B5) collapses to

1 0%0" R ,; = 100" R pes =1 R, (B7)

because of

abij

Rabcd + Racdb + Radbc =0. (BS)

However, when there is torsion, the two properties of R ,,; in
Eq. (B8) are no longer true, and so neither is Eq. (B7).

Rabcd = Rcdab ’

APPENDIX C: INDEX THEOREM AND PONTRYAGIN
NUMBER IN THE PRESENCE OF TORSION

The fact that we obtain equal number of left- and right-
handed zero modes is perhaps not surprising. A heuristic
argument'® goes roughly as follows.

Torsion can be switched on continuously. One can
write the w,, connection one-form, as

(©)
(@)% =& + 147, (C1)
)

so that as ¢ goes from O to 1 the connection goes from w to

)
® = w + A. The difference between the number of left- and
right-handed zero modes (n, — ny) is zero for t = 0 and so
by continuity it should not jump to an integer value as ¢
varies.

This argument is basically correct. However, there area
few technical gaps which we need to fill in to turn it into a
proof. Here, in fact, we need more than continuity since (n,,

+ ny) does jump discontinuously as ¢ varies. The crucial
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point is that unlike (1, + ng), the quantity (n, — ng) is re-
lated by the Atiyah-Singer index theorem to a topological
quantity, which is constant against continuous deformation
of connections.

Therefore, to turn the above argument into an explicit
proof we have to show that (1) the index theorem and (2) the
Pontryagin numbers are not affected by the presence of tor-
sion.

It should be straightforward to check (1). Here we only
check (2).

Recall that in the index theorem?

n, —ng = _L [1 — & Py + (TP — 4P;) + -1,
(C2)

the right-hand side involves only Pontryagin numbers (P,

« tr R **). We want to show that Pontryagin numbers are
©)

not changed by torsion. Let R and R be the curvature two-

©)

form constructed out of the connection one-forms w and w,

respectively. We now prove that

(©0)
ftrRz"zjtrR”‘ (C3)

(where the integrals are over a compact 4k-dimensional
©
manifold) if ® — @ = A4 is a tensor.

It suffices to show that
)
trR* —tr R* =dX, (C4)

where X transforms covariantly. We emphasize that we
know tr R % is locally exact. Indeed, in a previous work we
have derived the representation [Eq. (3.15) of Ref. 21]

1
trR¥*=d [2kj dt Str{w,(t do + t 0~ 1]]- (C5)
0

The properties of the symmetric trace Str may be found in
Appendix B of Ref. 20. The point is that the quantity in the
square bracket does not transform covariantly and so tr R %*
is not globally exact and its integral over a compact manifold
does not necessarily vanish. The claim in Eq. (C4) is that

)
tr R 2 — tr R *is globally exact.

For k small, one can verify Eq. (C4) by explicit compu-
tation using Eq. (C5). For arbitrary k this approach becomes
unwieldy. Instead, define w, as in Eq. (C1) and define

(0) )

R =dw, +w’=R +tDA+1t42 (C6)
© _ ) (0)
Here D is the covariant derivative with the connection w.

Then we find
d 0)
= tr (R,)* =2k tr(D/I + 261 Z)R -t
t

=2k tr(D, A )R %!
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= 2k Str(D,A,R *~ )
= 2k d [Str(A,R %~ 1)]. (C7)

Here D, is the covariant derivative with the connection o,.
The last step in Eq. (C7) follows from a property of Str [see
Eq. (B13) of Ref. 20] and from the Bianchi identity D, R,
= 0. The square bracket in Eq. {C7) transforms covariantly
provided that A ¢, is a tensor one-form and so Eq. (C4) fol-
lows.

Again, one may be tempted to argue that Eq. (C7) fol-
lows merely from continuity. However, one needs the addi-
tional input that A transforms covariantly.

Equation (C4) can be easily generalized to the cases in
which the Pontryagin densities are of the form tr R *.

tr R %% .tr R?". So the generic Pontryagin members are
also unchanged by addition of torsion.

Incidentally, the discussion here amounts to an indirect
proof that the Pontryagin densities for group manifolds van-
ish. Of course, one can compute them directly by using Eq.
(2.7).
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I. INTRODUCTION

Systems in thermodynamical equilibrium satisfy the
variational principle which implies a delicate balance
between energy and entropy. Perturbations necessarily in-
crease the free energy. Starting from this observation one can
derive inequalities for the correlation functions of classical
lattice systems."? It was noted’ that the energy-entropy in-
equalities show a formal analogy to quantum-mechanical
inequalities.’* In the present paper the analogy is elaborat-
ed. As a result new inequalities are obtained. They are ap-
plied in a subsequent paper” to derive lower bounds for the
fluctuations of an order parameter.

The quantum-mechanical inequalities relate moments
of time-dependent autocorrelation functions. In fact an infi-
nite chain of inequalities exist®’ between moments 4,, of dif-
ferent order n. It can be shown that an upper bound for the
moment x_, implies a lower bound for the moment ;. In
this way the quantum energy-entropy inequality (in its sym-
metrized form) is a consequence of the Roepstorff inequality
[inequality (10) of Ref. 4, implicitly present in (B18) and
(B20) of Ref. 3].

By analogy the same relations hold for the classical in-
equalities. The energy-entropy inequality of Ref. 1 in its
symmetrized form is a consequence of a new inequality
which is derived in the present paper. Also the analog of the
infinite chain of moment inequalities is derived.

In the next section the notations are fixed. In Sec. III
the origin of the analogy is discussed. Section IV introduces
the moments of classical correlation functions. The basic
relations between consecutive moments are derived. As a
consequence bounds on moments always appear as pairs of
inequalities. In Sec. V such pairs of inequalities are derived.
In Sec. VI a short discussion follows. The Appendix elabor-
ates the relation with the theory of modular automorphisms.

Il. NOTATIONS

The configuration space of the classical lattice system is
the product space K = of local configuration spaces
K, ,icZ":K © =1II,K;. The local spaces K; are all copies of
one and the same probability space (K,p,), €.8., a compact
group K with Haar measure p,,.

The interaction of the system is given by a set of func-
tions

{# (X )|X finite subset of Z"}.”
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Each element ¢ (X ) is a continuous function of the configura-
tions in X. Assume that

1/ =sup > X < + oo (1

XieX

The local Hamiltonians are defined by

H, =% ¢X). (2)
XCA

Let us from now on fix a finite subset A of Z *. Consider
a A-local transformation U of the configuration space, i.e., U
is a continuous invertible map of K = into itself which does
not change the configuration outside A. It is assumed that
the a priori probability measure p, is invariant under U. The
change in energy due to the transformation U is measured by
the variable

1 _
P= —S6X)PU™ —4 (X)) 3)
X
In the latter expression the summation is restricted
to the sets X which intersect A. One has
P=1lim, ,4H,oU ' — H,). From (1) there follows
1P|, <N{A)4 I (4)

[N (A ) denotes the number of points in A.]

Hence P belongs to € (K =), the algebra of real-valued
continuous functions on K .

Let us finally fix a normalized regular Borel measure p
on K = describing the equilibrium state of the system. As-
sume that p satisfies the DLR equations for the a priori prob-
ability measure p, and the interaction ¢ at inverse tempera-
ture B = 1. Then it follows for all 4 in € (K ) that

plAcU) = plde ") (5)
The latter equation is the starting point of the present paper.

lll. THE ANALOGY

The formal analogy between the classical and quantum-
mechanical inequalities is unraveled. In the next sections the
classical inequalities will be derived by use of the analogy,
i.e., by translating the quantum-mechanical inequalities and
copying the proofs.

In the quantum case the time-dependent correlation
function is given by

Sf(t) =pix*x,). (6)
It satisfied the KMS boundary condition® which states that
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the function f has an analytical continuation in part of the
complex plane, such that

e+ i) =plx,x*. ()
One also considers the symmetrized correlation function

F{t)=f@t)+f(—t+10) =plx,x* + xx*,). (8)
The latter clearly satisfies the relation

Fit+i)=F(—1) (9)

The inequalities of interest here>*®7 are direct conse-

quences of the KMS boundary condition. Hence it is obvious
to look for a time-dependent correlation function of the clas-
sical system which satisfies an analyticity property similar to
the KMS boundary condition. However one cannot expect
that the time evolution needed in the classical case coincides
with the physical time evolution of the classical system. In-
deed a physical time evolution of microscopic nature need
not exist (see, e.g., the models with discrete spins). Moreover
the classical limit of the KMS boundary condition® is no
longer expressed as an analyticity condition but either as a
static equation or as a differential equation.'® In some cases
one can study the classical limit of the quantum inequalities.
But in the limit the outlook of the inequalities changes, and
the formal analogy gets lost.

In the quantum inequalities the noncommutativity of
the operators x and x* (the Hermitian conjugate) is impor-
tant. The classical surrogate for the Hermitian conjugation
will be derived from a local transformation U of the phase
space, as introduced in the previous section. The desired
choice for (the classical analog of) the time-dependent corre-
lation function turns out to be (using the notations of the
previous section)

£1t) =plae™). (10)
Because the function Pis bounded, an analytic continuation

of f exists throughout the complex plane. Using (5) one ob-
tains the boundary condition

fle+1i)=p((de*™)oU). (11)
The symmetrized correlation function equals
Fie)=ft)+f(—t+1)
= p(A (cos 2Pt + i tanh Psin 2Pt )(1 + e ~*%)).(12)

Note that the classical observable 4 replaces the operator
x*x. Hence it is obvious that the condition A >0 will be need-
ed for the inequalities to hold.

The analogy can be carried through to a deeper level in
case the transformation U satisfies the condition U? = 1.
Then U is an involution which corresponds in the quantum
context to a basic symmetry between representations and
antirepresentations of the algebra of observables. The latter
symmetry has been studied in the theory of modular auto-
morphisms.'! A short discussion on these matters is found in
the Appendix.

IV. MOMENTS

The moments of the symmetrized correlation function
F (t) are defined in the usual way by
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dn

L= (20" n=0,12,.., (13a)
L, =(2i) i

F(t)l,—o,
and

L= J:th(it ) (13b)

A straightforward calculation using expression (12)
shows that one has

H, =pAP"(1 + (—1)"e~?F))
=p(AP") + (— 1)p((AP")oU). (14)
If U%? =1 is satisfied then one has PoU = — P and there
follows
U, =plAP") + p((A°U)P"). (15)

Throughout the rest of the paper it is assumed that
A>0, 4 0, and P #0. Because the equilibrium state p is
faithful it follows that all the moments u,, are strictly posi-
tive.

Theorem 1: Let neN.

(a) If y is given by

Han 1 =My, ' tanhy, (16a)
then one has

Man 4 1 >H2,) tanh p. (16b)

(b) If y is given by

Han 41 = [,y tanh y, (17a)
then one has

Ban - M0,y ' tanh y. (17b)

Proof: Tt is enough to prove the inequalities for n = 0.
For n> 0 the result is obtained by substituting 4 by AP?".
For n = 0 the theorem gives the classical analog of the Falk
and Bruch inequality® and corresponds to Theorem I1.4 of
Ref. 7. The inequalities found below in Theorem 2 corre-
spond to those of Ref. 7 for n> 0. For completeness the
proofs are repeated here.
The function g defined on the unit interval by
gy~ 'tanhy) = y tanh y
is well-defined and convex (see Lemma I1.3 of Ref. 7). Hence
one has, by use of Jensen’s inequality,
p =plAP(1 —e™ ")
=p(4 (1 4+ ¢ **)Ptanh P)
=p(A(1 + e~ *)g(P ' tanh P))

+e‘2P)P_'tanhP))
plA(1+e %)

Spld (1 + e~ 2P))g(p(“‘ {1

= jiqy tanh y,
with y given by
y~'tanhy =p(4 (1 + e~ 2*)P ="' tanh P)/p(d (1 + e~ ?F)).

Hence (17) follows.
Remark that

By =plAP {1 —e~?")<plA (1 + e~ ") = po.
Hence one can decrease y in expression (17b) until one ob-
tains an equality. By doing so (17b) becomes (16a), and (17a)
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becomes (17b). In fact the expressions (16) and (17) are equi-
valent. This ends the proof.

The important consequence of the previous theorem is
that any upper bound for the ratio u,, _ ,/u,, givesrisetoa
lower bound for u,,, ,  /t,,. Similarly any upper bound for
M, 4 3 /15, implies a lower bound for ,,, _ ; /u5,.

V. PAIRS OF INEQUALITIES

The previous theorem relates triples of consecutive mo-
ments, and gives lower bounds for the odd numbered mo-
ments. The next theorem relates pairs of consecutive mo-
ments, and gives a lower and an upper bound for the odd
numbered moments. The lower bound is less sharp than that
of Theorem 1.

Theorem 3 gives an upper bound for the moment 2 _,
and a lower bound for the moment x,. Again the lower
bound is less sharp than that of Theorem 1.

Theorem 2: Let n>1. Let y = (u,,/1o)"”*". Then one
has

(2) 20 _ 1 <M,y ' tanh y, (18a)
and
{b) 12, 1 1 >4,y tanh p. {18b)
Proof: The function g defined on the positive axis by
g™~ ' tanh y) = "
is well-defined and convex (see Lemma II.3 of Ref. 8). Hence
one has, using Jensen’s inequality,

Han =plA (L + e )P
=pl4(1 + e~ *")g(P*" ' tanh P))

pld(1 +e‘2P)P2“’1tanhP))
plA (1 +e™ %)

SplA (1 + e ”’))g(

= poy™"
withy givenby y** ~ ! tanh y = u,,, /0. Now the function
y—y*"~'tanh y is monotonically increasing. Hence the
foregoing is equivalent to inequality (18a). Inequality (18b)
follows from (18a) and Theorem 1. This ends the proof of the
theorem.
Theorem 3: One has

(a) u_1<2(p(4) — pl4°U))/log( pl4 )/p{A°U)),  (19a)

and
(bl u,> Y pld) — pl4°U)og( pid )/p(4°U)). (15D
Ifp(4 ) = p(4°U ) then the inequalities reduce top _ ,<u,and

#,>0.
Proof: The proof uses the argument of Sec. 2 of Ref. 4,
taken over in Theorem III.1 of Ref. 12. One has

2
po=plAP 1 —e ) = [ diplde ")
0
Let g(t) = log p(4e ~**). One has
d’g
dr?

= plde™ ") pldP%e = "|p(de ")

—pldPe " 7).
From Schwarz’s inequality it follows that d 2g/dt*>0.Hence
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the function g is convex. Therefore one has for 0<¢<2

8lt)< 4 (g(2) + 8(0) + 4 ¢(g(2) — g(0)).
One obtains

2
u_1=J;dteXPg(t)

<exp(—-tg2) + g(on)fdt exp(~ 116(2) —0)

= 2(g(2) — g(0) e — =)
Now one has

g(2) — £(0) = log( p(de ~*7)/p(4 )),
and

e — ef9 = p(de = *F) — pld).

Hence (19a) follows. The inequality (19b) follows from (19a)
and Theorem 1. This ends the proof of Theorem 3.

VI. DISCUSSION

By analogy to the quantum case’ one can expect that if
the inequalities (18) of Theorem 2 hold for arbitrary func-
tions 4 >0 then the equality (5) should hold. Similarly if one
of the inequalities of Theorem 3 holds for arbitrary 40 and
for a sufficiently large class of transformations U, then one
can expect in the light of the proof of Ref. 1 that the DLR
equations are satisfied. A confirmation of these expectations
would indicate that the inequalities are optimal. The prob-
lem is not treated in the present paper.

The energy-entropy inequality of Ref. 1 in the present
notations reads

2 plAP)>p(4 Jlog( pld )/plAoU)). (20)
Assume that U2 = 1. Then (20} implies
2p((4°U)P)>pldeU )log( pl4°U)/p(A ).
There follows using (15)
2, = 2p((A + A°U)P)

>{pld) — pld°U)log( pl4 )/pl4°U)),
which coincides with inequality (19b). This shows that the
inequality (19b) is the symmetrized form of the energy-en-
tropy inequality (20).
An application of the new inequality (19a) is found in a
separate paper.’
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APPENDIX: MODULAR AUTOMORPHISMS

The analysis found here is not of direct relevance for the
paper. But the observation made in Sec. III that the local
transformation U is related to a kind of KMS boundary con-
dition as expressed in Eqs. (10) and (11) is intriguing enough
to justify some further investigation.

Let .« denote the C *-algebra of continuous complex
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functions on X . Then the equilibrium measure p extends to
a faithful state on .. A scalar product is defined on &/ in the
usual way by

(S ) =p(F1).
Denote 7 the complex Hilbert space obtained by closing
.

Assume that U? = 1. Then a conjugate linear involu-
tion S on 57 is defined by

Sfedd —foU.

The algebra .« equipped with the involution S is an involu-
tive algebra but not a left Hilbert algebra (except if U = 1).
Nevertheless part of the theory of modular automorphism
groups can still be applied. Indeed it has been shown!® that
the KMS boundary condition is concerned with real sub-
spaces of a complex Hilbert space; the presence of von Neu-
mann algebra’s is not essential.

Denote ¥, = { fe |foU = f} the set of self-adjoint
elements for the involution S. One has the following result.

Theorem: There is a unique strongly continuous one-
parameter group (U,), of unitaries on 7 leaving %", invar-
iant and satisfying the KMS boundary condition: for each
pair £, /" in ", there exists a function g, defined, bounded,
and continuous on the strip 0<Im(z)<J, analytic inside the
strip, such that

git)=(Uff", forallrealt,
and
gt + i/2)isreal, for all real r.

One has for all fe/ that U f = ¥ f,

2707 J. Math. Phys., Vol. 25, No. 9, September 1984

Proof: (a) Existence. Let (U,), be defined by U, f = e**' f,
feo. It is straightforward to prove that the group (U,), is
strongly continuous, leaves %", invariant, and satisfies the
KMS boundary condition.

(b) Uniqueness. Denote %~ the closure of %", in 7.
Remark that any fe&/ has a unique decomposition
f=/f1+ i, withf, and /,€%",. Hence %", + i %", and a for-
tiori X" + i.%" is dense in J7°. It then follows from Theorem
3.9 of Ref. 13 that (U,), coincides with the group of modular
automorphisms associated with #”. Hence uniqueness fol-
lows. This ends the proof.
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Suppose that the Hamiltonian H = — 4 + yf(r) represents the energy of a particle which moves in
an attractive central potential and obeys nonrelativistic quantum mechanics. The discrete
eigenvalues E,, = F,(v) of H may be expressed as a Legendre transformation

F, () =ming o(s + vf,(s)), n=123,., [=0,1.2,., where the “kinetic potentials” £, ,(s)
associated with f{r) are defined by £,,(s) = inf,,  sup ;. § ¥(r) f([¢, — A¢)/s]"*r)yfir)d °r, and

¥l =1

D,, is an n-dimensional subspace of L (R?) labeled by Y,™(6,4 ), m = 0, and contained in the
domain .Z(H ) of H. If the potential has the form f(r) = =_, g f“(r)) then in many interesting
cases it turns out that the corresponding kinetic potentials can be closely approximated by
=N, 8% f,,"(s)). This nice behavior of the kinetic potentials leads to a constructive global
approximation theory for Schrddinger eigenvalues. As an illustration, detailed recipes are
provided for arbitrary linear combinations of power-law potentials and the log potential. For the
linear plus Coulomb potential and the quartic anharmonic oscillator the approximate eigenvalues
are compared to accurate values found by numerical integration.

PACS numbers: 05.30.Fk, 05.30.Jp, 03.65.Ge

1. INTRODUCTION

The term “kinetic potential” was introduced' in 1983
and is a shortened version of the more explanatory name
“minimum mean isokinetic potential.” This concept arose
from our geometrical theory’ of energy trajectories in quan-
tum mechanics. The main idea is as follows. We consider the
Hamiltonian

H= —4 +uf(r), r=]r|, (1.1)

which represents a particle moving in an attractive central
potential yf () with positive coupling constant v. We suppose
that for v sufficiently large there exist discrete eigenvalues
E,, for Hinsome suitable domain & (H) C L *(R>), wherelis
the angular-momentum quantum number and » is a radial
quantum number: this is guaranteed, for example, when f(#)
is monotone increasing on (0,0 ). In this notation for the
cigenvalues we have E,, <E,,, k> n, n = 1,2,3,..., and there-
fore each of the eigenvalues so labeled has degeneracy pre-
cisely 2/ + 1. Hence, for each v sufficiently large, we can
write

E, =F,v), (1.2)

where the graphs (v, F,,(v)) are called “energy trajectories”
of the potential f(r). Thus the potential with shape fgives rise
to a family of trajectory functions {F,,}.

The kinetic potentials £, (s) emerge when the constraint
(¥, — Ay)/(¥,¥) = 5> 0 is applied during the optimization
process leading to the eigenvalues of H: the subset of Z(H )
identified by this side condition is not a subspace of the Hil-
bert space L *(R?). This fact will become important when we
proceed to the higher kinetic potentials in Sec. II below. For
the ground state, however, we can immediately define the
kinetic potential /{s) associated with the potential shape f ()
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by the equation
fl)=inf (& ). (1.3)
Ye s
Il =1
¥ — sy =s

It follows from the variational principle that the ground-
state eigenvalue is given by

E=F(v)=mi{)1 [s + vf(s)]. (1.4)

In the case that f(s) is smooth we obtain the following para-
metric equations for the energy trajectory F (v):

E=FWw)=s+ufis) v''=—f") s>0. (L5

Thus the trajectory function F has been reached from the
potential shape fin two stages: f— f— F; the second stage
which transforms the graph (s, £(s)) to the graph (v, F(v)) is
essentially a Legendre transformation.” We shall extend de-
finition (1.3) to cover the higher eigenvalues in Sec. II. An
elementary illustration is provided by the harmonic oscilla-
tor H= — A + vr* for which we find

f="7 fu=Qn+1—1Ps7",
Fo )= (4n + 21 — 1p'/2 (1.6)

The reason we use kinetic potentials is that they have
some very nice properties under certain transformations of
the potential, such as convex transformations and linear
combinations. This simple behavior on the kinetic energy
hypersurface allows us to construct a global approximation
theory for Schrodinger operators. A geometrical theory
based on these concepts has been developed in a sequence of
four articles which we shall hereafter refer to, respectively,
as I (Ref. 3), IT (Ref. 3}, IIT (Ref. 3}, and IV (Ref. 1). The main

® 1984 American Institute of Physics 2708



thrust of the work to date has been to do with applications to
the N-identical particle problem whose energy is related to
the single-particle spectrum via the necessary permutation
symmetry of the N-particle states. In the present article we
focus our attention on the basic problem of a single particle
in a central potential.

We present two principal theoretical points and then
consider two examples in some detail, the linear plus Cou-
lomb potential and the anharmonic oscillator potential. We
are able to offer a sounder foundation for the higher kinetic
potentials than we were able to present in I'V. It is likely that
the theory could eventually be used to support parts of con-
ventional operator theory. However, in this article we con-
tinue to make safe assumptions about the potentials and to
rely on the standard theory to justify what we do: the empha-
sis is still on concrete results and examples for which all the
details can be worked out. The main novelty of the present
paper is our discovery that kinetic potentials are almost ad-
ditive. This notion is captured by the following relations:

£1r) = A7) + BFOLr) (1.7

Juls)~AFis) + BF (). (1.8)
Although no such simple approximation as (1.8) holds for
the energy trajectory functions F,,(v) themselves, they are
easily obtained from the kinetic potentials £,,(s) by the Le-
gendre transformation (1.5). The relation (1.8) extends to a
larger sum of terms and also to integrals. As the vector
(4, B,...) of coefficients approaches a vector with only one
nonzero entry, “~"’ approaches “="; in all cases where
n=1,“~" becomes “>" (leading to a lower energy bound
for the bottom of the spectrum in each angular-momentum
subspace}. In other cases the approximation turns out to be
consistently good and therefore very useful, as the examples
will show.

Every numerical result in this article can be found by
integrating Schrodinger’s equation directly with the aid of a
computer. In fact we have had to master this art in order to
be able to test the quality of our approximations. For the sort
of regular problem which we are considering the computer
gives very reliable and reasonably fast results. This competi-
tion from the machine provides strong selection pressure
guiding our analytical work in the direction of simplicity: if
our results are not simple and general, it may be more effec-
tive to spend our time writing a computer program to take
care of the problem. Actually, for this article, we found our
energy bounds and other estimates of great help in guiding
the computer program in its numerical search for the eigen-
values. Our principal conclusion after our experience with
this particular combination of analytical and numerical
techniques is that, even in the presence of a friendly comput-
er, there is still nothing quite so nice as a good formula.

Il. KINETIC POTENTIALS

We first restrict the shape f(r) of the potentials so that
our problems are comfortably within the scope of standard
nonrelativistic quantum mechanics. We refer the reader to
the textbooks by Prugove&ki,* Reed and Simon,® and Thir-
ring,® and in particular to Reed-Simon Chap. XIII. We con-
sider the Hamiltonian
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H= -4 +yfr), r=]r|, v>0 (2.1

with the hypotheses
>0,

r>0,
(2.2)
|Pf(r)] —0, r—0.

Under these conditions we know that H is essentially self-
adjoint on some domain & (H ) C L *(R*) and also that dis-
crete eigenvalues always exist for sufficiently large values of
the coupling constant v. The implied differentiability of the
potential shape f(r) is a convenience which allows us to use
calculus.

We now suppose that v is constant and sufficiently large
to guarantee at least # discrete eigenvalues at the bottom of
the spectrum of H. We work with the min-max characteri-
zation of the eigenvalues (see Reed—Simon,’ Volume 1V, p.
75, and Thirring,® Vol. 3, Sec. 3.5.21) and show how the
kinetic potentials f, (s) emerge from the optimization pro-
cess. Later, we can repeat the argument inside the angular-
momentum subspace of L *(R?) labeled by the spherical har-
monic Y;™(@,¢) and m =0 to obtain the corresponding
kinetic potential £,,(s). Once the definition of these objects
and some of their elementary properties have been estab-
lished we shall be able to work constructively and use the
known exact trajectory functions F,,(v) to derive the corre-
sponding kinetic potentials £, (s): these will then become the
building blocks for our approximation theory.

Suppose {¥,,¥,,...,¢, } is a set of n linearly independent
vectors in & (H ), then we define

D, = span{¢,¥,,...¥,}, D, C Y (H), (2.3)
(6Y)r) = ¢,(t/0), i=12,..n, (2.4)
6D, = span{61,,6v,,....60, }, (2.5)
9,=u (&D,)}. (2.6)

o>0

We note that although &, is the union of a large number of
n-dimensional linear spaces, it is not itself a linear space. By
the min—max (Rayleigh—Ritz) principle we have

F, (v)=inf sup (¢,Hy). (2.7)
D, y¢eD,
[l =1
A possible route for the process (2.7) is given by

F,(v)=inf inf sup (4,Hy), (2.8)
D, 0>0¢eéD,

ol =1
ie.,

F,(v)=infinf sup

D, s>0 YeZ

“'n

(¥.HY). (2.9)
It =1
W — Ay =s
In (2.9) ¥ no longer explores a linear space but rather that
part of &, which satisfies ||| = 1 and also (¢, — 4¢) =s.
The danger here is that the sup may fall below the nth eigen-
value; however, this does not happen. We can see that this is
so by the following observations: setting (¢, —AyY)=s
amounts to choosing a scale o for the functions which are
used in the approach to the sup of (y,Hy); this is a very

Richard L. Hall 2709



complicated way to choose a scale, but all scales are included
in the union of linear spaces & ,. We now make the follow-
ing step:

F,(v)=infinf sup (¢,HY). (2.10)
s>0 D, yeZ,
fletl =1
¥, —Ad)=s

The exchange of the inf’s from (2.9) to (2.10) is aliowed be-
cause, in either order, the overall minimization explores the
same set of all n-dimensional subspaces of L *(R*) which are
contained in & (H ). Hence we can write F, (v) in the form

F,(v) = inf (s + of,,(8)), (2.11)

where
Jls)=inf  sup (g, /4) (2.12)
ol =1
(¥, —AY)=s

An important point about this definition of the kinetic po-
tential is that £, (s) is not labeled by the value of v: the reason
for this is that (¢, — A¢)/||¢]|* = sis held constant under the
sup’sin (2.9) and (2.10); the partial trade-off between kinetic
and potential energy concerns only the shape of f(r).

An equivalent definition to (2.12), which may prove to
be more convenient to work with, is obtained in the follow-
ing way. We first note that the operators — 4 and f scale
according to the equations

(6, — A5Y)/(6¢,6¢) = 024, — AY)/($9),  (2.13)
and
6Y,fo9) _ -2 3
T = i~ [ wtei o (.14
Consequently we have from (2.12)
Ty =int sup | vt
fiwll =1
(2.15)

o[B8

We exploited a form like (2.15) in paper IV [Eq. (3.8)] to
obtain ground-state upper bounds by choosing a particular
shape for ¥: the subsequent minimization with respect to s in
this case is equivalent to a minimization of the energy expec-
tation with respect to the scale of the wave function.

As we mentioned above, we get the kinetic potentials
£..(s) by repeating all the above steps inside the subset Z,(H )
of &(H ) which is also contained in the subspace of L *(R?)
defined by the projector corresponding to the spherical har-
monic ¥,"(6,¢ ) with, for example, m = 0. For each value of
v (sufficiently large) the equation

Fy(v) = min (s + 0 5)), (2.16)

then gives back the eigenvalue F,,(v) which has degeneracy
exactly 2/ + 1 because, of course, the eigenvalues obtained
by the variational method satisfy F,,(v)>F,,{v), for n > k>1.
By using calculus we then obtain from (2.16) the Legendre
transformations

2710 J. Math. Phys., Vol. 25, No. 9, September 1984

Fu) =s+uf,ls) v™'= —Ffuls),
and

Suls) = F,(v),

(2.17)

s=F,(v) —vF,(v). (2.18)
In the cases where we already know the trajectory functions
F,,(v), rather than use the general definition corresponding
to (2.12), we instead solve (2.18) to find the kinetic potentials
Jou(s). For many useful potentials, this can be done exactly.

This completes the foundation work for the higher ki-
netic potentials which was only briefly glossed over in Sec. 6
of paper I'V. In the present article we have used the trajectory
functions F(v) rather than the functions G(u) = uF(1/u)
which were employed in paper IV to discuss convexity. We
refer the reader to the earlier article for a general discussion
of ordering, scaling, and convexity properties, and for a table
of kinetic potentials.

lll. SOME ESTABLISHED PROPERTIES OF KINETIC
POTENTIALS

We present here a very brief summary from paper IV of
the results which we shall need concerning kinetic poten-
tials. The potentials f(r) will be constructed in various ways
but we shall always assume that they satisfy the following
conditions:

f'(n>0,
|Pf(r)] — 0,

r>0,
(3.1)

r—0.

The smoothness and nice behavior at the origin are analyti-
cal conveniences. The essential restriction in the present
work is that f(r) is monotone increasing.

We first gather in one theorem the principal scaling,
convexity, and ordering results. It has also been established
that F(v) is concave and that G (4) = uF (1/u) is monotone
increasing and concave, but we shall not need to use these
facts, nor the various results concerning variational approxi-
mations, in the present article.

Theorem 3.1: We suppose that the kinetic potentials
corresponding to the potential f(7) are given by £, (s).

(a) 4 + Bf(r/a) — A + Bf,,(sa®), B>0,a>0.

(b)],,,(s) is monotone increasing and convex on (0, « ).

(c)f‘” < f(2) _’J—v(l) < }'(2) S FW <F(2).
the ordering result (c) means that variational arguments do
yield the results we expect to get as we proceed from poten-
tial to kinetic potential to trajectory function: the functional
inequalities, of course, are meaningful only over common
domains.

The second theorem summarizes the key results which
allow us to approximate the spectra of Schrédinger Hamilto-
nians in which the potential has been composed out of *‘solu-
ble” potentials by convex transformations and linear combi-
nations. When there is more than one term (N>2) we have
been able to establish a bound (in fact, a lower bound) on the
exact kinetic potentials only when they correspond to the
bottom (n = 1) of the energy spectrum in each given angular-
momentum subspace (given /). One of the main objectives of
the present article is to attempt to transcend this limitation.
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Theorem 3.2: Suppose that
N
fin=3 &),

i=1

and

N

P,ls) = Zl g fhls))-

(a) If the { g} are all convex andif n =1o0r N =1 we
have £, (5)>®(s) i

(b) If N = 1 and g is concave, then f(s)<®,,(s).

It will be noticed that Theorem 3.2 yields no upper
bound in the case of more than one term (N3»2). This is the
reason that variational upper bounds are studied in the
framework of kinetic potentials in paper IV. However, we
shall not discuss this topic in the present article.

The potentials we propose to consider as illustrations of
the theory will be composed out of power-law potentials and
the log potential; we therefore collect here the established
results' which we shall need for these potentials. The power-
law potentials are defined by

fir)=sgnlg)*, ¢>—1, ¢#0. (3.2)
By scaling arguments one finds for these potentials that the
eigenvalues of H = — A4 + uf|(r) are given by

F, )= vz/‘2+q)E(q7 n, I)r E(q’ n, l) = Fnl(l) (33)
Interms of these v = 1 energies E ( ¢, n, [ ), whose meaning is
perhaps more immediate than the various coefficients of pa-

per IV, we can write the power-law kinetic potentials in the
form

Juls) = 2/9)|4E (g, n, 1)/(g + 2|7+ P25 =2,

5>0. (3.4)
Similarly, for the log potential

Sf{r)=In(r), (3.5)
wehave found"’ that the eigenvaluesof H = — 4 + yf'(r)are
given by

F,()=vE(L,n1)—Yvinw), E(L,nl)=F,(1), (3.6

and it follows [from Eq. (2.18)] that the kinetic potentials are
given by
fuls)=E(L, n,1) — | In(2se), e = exp(l). (3.7)

We now have the theorems we shall need, and also the
kinetic potentials for the potential components expressed in
terms of the elementary eigenvalues E (¢, n, /)and E (L, n, )
of the power-law and log potentials; tables of these eigenval-
ues for ¢ = 1 and 4 and for the log potential are given in the
Appendix.

Eventually we expect to have an independent theory of
kinetic potentials which would start from Eq. (2.15) as a de-
finition. The object which we shall have to study is the func-
tional I":L *(R?) — R which for each fixed fand s is given by

F(¢)=f¢(?)f([(%—A¢)/S]”2r)¢(r)d3r. (3-8)

The kinetic potentials £, (s) are the stationary values of I" (/).
We make two comments about I () with potentials of type
(3.1) for future reference: (i) I" () is invariant under spatial

s>0,
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scale changes; and (ii) the spectrum of I" () appears always to
have an infinite number of discrete stationary values. The

Hulthén potential f(r) = — (¢” — 1) ' illustrates this very
well. Suppose we consider the Hamiltonian
H= —A—ye —1)"" (3.9)

The discrete S-state spectrum of H is well known® and is
given by

F )= — (v— n)*/4n?, n=123,... (3.10)
We find by using Eq. (2.18) that the corresponding kinetic
potentials are given by

fols)= — {(1 +45)'2 = 1}/2n, s>0. (3.11)

The critical coupling constants v,, = n are buried in the
shapes of the kinetic potentials f,, (s) which are defined for all
5> 0: the quantity F,,(v) = min{s + vf,,(s)] only exists for
v>n. These considerations indicate that kinetic potentials
have even more nice properties which are not revealed by
examples involving only the power-law and log interactions.

v>n,

IV. ALMOST ADDITIVITY AND THE SUM
APPROXIMATION

Suppose we can solve the Schrodinger eigenvalue prob-
lem for H = — 4 + yf%(r), with i = 1,2,...,N. What can we
then say about the spectrum of H = — 4 + f{(r), where

fln= g: A1), 4950, (4.1)

i=1
Our claim is that for the potential (4.1) it is a good approxi-
mation simply to add the component kinetic potentials, that
is to say, to use the sum approximation

Fuls)~ 3 AT, ). 4.2)

i=1

We know from Theorem 3.2 (a) that if we look at the bottom
of the spectrum (n = 1) in a particular angular-momentum
subspace (a given /), then Eq. (4.2) yields a lower bound (i.e.,
“~? = “3»”). The relation becomes an equality, of course,
whenever there is only one term in the sum. The Legendre
transformation (2.17) which converts the kinetic potential
into an energy trajectory corresponds to a minimization with
respect to scale: consequently the approximate energy tra-
Jectories which derive from (4.2) obey the same scaling laws
as do the (unknown) exact trajectories; specific examples are
discussed in Secs. V and VI.

The form of the sum approximation (4.2) is such that if
it is good for any two potentials from a certain collection,
then it will be good for the sum over any N of these poten-
tials. Let us therefore look first at an example of the case
N = 2 in which the details can be written down simply and
explicitly and analyzed. We study the example

frl= —A4/r+ B, 430, B>0. (4.3)

This potential increases too fast for large r to represent the
central part of a quark—quark interaction, but it is a potential
of that general type. We already have the general form of the
kinetic potentials for the components in Eq. (3.4) above.
The eigenvalues E(—1,nl)= —1/4n+1)* and
E(2,n,1)=(4n + 2] — 1) are the well-known results for the
hydrogen atom and the spherical oscillator. Consequently,
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we can immediately write down the details of our approxi-
mation as follows:

Coulomb component: — 1/r — —s'%/(n +1), (4.4)

Oscillator component: r* — (2n + 1 — })’s~". (4.5)
Hence our sum approximation in this example becomes

Fuals)~ —AsV/(n+ 1)+ B(2n + 1 — 1%~ (4.6)

Before we try to evaluate the numerical quality of the
eigenvalues which result from (4.6) we shall first use our
geometrical theory to find analytical bounds on £,(s). We do
this by employing the method of potential envelopes intro-
duced in paper I (see Ref. 3). This method has been con-
densed into the cases N =1 of the present summary
Theorem 3.2. We first set up dual representations for f{r) as a
convex transformation of ( — 1/7) and as a concave transfor-
mation of (r*). Thus we have

fin=4(—-1/n+B(—1/n?

= —A/(P)"*+B() 4.7)
If we now apply Theorem 3.2 we find
— As'?/(n + 1) + B(n + 1 Ps<fuls)
<—As"*/2n+1—)+B2n+1—14)s. (4.8)

The nice form of (4.8) is not accidental: a full explana-
tion may be found in paper IV, Sec. 8A. This result by the
envelope method suggests that we consider approximations
of the form

Juls)~ — As'?/vi + B (vys'?, (4.9)

for various v, and v, [including, of course, v, =v, =,
where v lies between (n + /)and (2n + [ — 1)]. In order to get
the correct result whenever A or B is zero, one is led back
again in this way to the sum approximation (4.6). We have
gone into these details in order to make clear how the differ-
ent methods interact with the problem. Later in this section
we shall establish general formulas which summarize the
application of the sum approximation to arbitrary combina-
tions of power-law potentials and the log potential. The en-
velope method which we have just used as a tool will not be
treated in general because it has already been applied to
many different situations in papers I, II, and IV.

In order to obtain the approximate eigenvalues from the
kinetic potentials (4.6) we must apply the Legendre transfor-
mation (2.17). Some numerical results for 4 = B = 1, along
with accurate values (in parentheses) obtained by “‘shooting
methods” on a microcomputer, are as follows: E,, = 1.706
(1.785), E,,=6.048 (6.029), E, =4.193 (4.229),
E,, = 16.512(16.533), and E5 = 28.619 (28.634). This data
is typical of what we have found for the sum approximation:
the error is at worst a few percent and decreases rapidly with
increasing n and /; when the potential components are less
“different,” the errors turn out to be much smaller, as we
shall see in Secs. V and V1. The bounds (4.8) provided by the
envelope method were very useful in automating the com-
puter search for the accurate eigenvalues needed for this
comparison.

We now organize the details of the application of the
sum approximation (4.2) to a wider class of potentials. More
interesting specific applications will then be considered in
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Secs. V and VI. The potential we consider is given by
flr)=Y 49 sgn(g)” + B Inr),
q

A930, B>0. (4.10)

We substitute Egs. (3.4} and (3.7) in Eq. (4.2), apply the Le-
gendre transformation (2.17), and simplify the resulting ex-
pressions. If we make the convenient change of variables
t =5~ "2 we find finally that the eigenvalue E (n, /) of the
operator H = — A + uf (r) is approximated by

Ev =49 gE" 4™ 192 + q)
q (g +2) q
+ B(e+}1n(r2/2)),

q>—'1’

where

u"lzzA(q) M @+2/2 g2
g g+2) >

and we have written for the pure power-law and log poten-

tials

EY=E(qn1) and e=E(L,n,l).

Tables of the eigenvalues E(gq, n,/) for ¢ =1 and 4, and
E(L, n}) are given in the Appendix. The simple formulas
{4.11) are parametric equations for the energy trajectories
(v, F,;(v)) in terms of the parameter ¢ > 0; they are the equa-
tions to use in a typical application of the sum approximation
to potentials in the class (4.10). Since the errors are usually
too small to show on a graph, in the present paper we shall
continue to choose values for v and the B and the {4 ¥}, and
compare our resuits with accurate values in tables.

The sum approximation evolved as a result of the inter-
play between the potential-envelope method of paper I and
the linear-combinations method of paper 111, along the lines
of the illustration discussed at the start of this section. Our
original approach to the problem (paper I1I) was to consider
the following identity satisfied by the Hamiltonian
H= —A+f) + 1%

H=w[—4+w ' Y]

+(1—w) -4+ (1 —w 2,
I>w>0.

, >0, (4.11)

(4.12)
For each fixed w the Hamiltonian therefore has the form
H=HY 4+ H®?, 4.13)

The question of the spectrum of a sum of operators is, of
course, very old. Two important contributions to this topic
are the articles of Weyl® and Fan.!® A more recent discussion
of Weyl’s Theorem in the context of Schrodinger operators
may be found in the book by Weinstein and Stenger.'" If the
operators H, H'", and H ® each have at least n discrete eigen-
values at the bottom of their spectra, then we know from
Weyl’s theorem that

E,>EP+EY, g+r=n+1 (4.14)

If we restrict the problem to an angular-momentum sub-
space (labeled by /), choose n = ¢ = r = 1, and maximize the
right-hand side of Eq. {4.14) with respect to the parameter w
of Eq. {4.12), then we get the linear-combination method of
paper III [this is included in Theorem 3.2 (a) of the present
article]. However, if we choose n> 1, and repeat the same
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application of Weyl’s Theorem, we find that the resulting
lower bounds are very weak. In terms of the present discus-
sion, our sum approximation can be thought of as a proce-
dure which is based on the initial approximation
E,~E'" + E® and the observation that this yields good
results provided that it is optimized with respect to the con-
vex-combination parameter w, 1 > w> 0, of Eq. (4.12).

V. THE COULOMB PLUS LINEAR POTENTIAL

We consider the potential

flr)= —A/r+ Br, A4>0, B>O. (5.1)
This potential is of practical interest because it represents the
approximate shape of the central part of the quark—quark
interaction. For the Hamiltonian H = — 4 + f(r), both the
exact energies E,,(4, B) and the approximations given by
the sum approximation are easily shown to obey the same
scaling laws:

E, A, B)=Jd’E, A /o,B/d), o>0, (5.2)
and, in particular with o = 4, one finds
E, A4,B)=A%E,(1,B/A4°). (5.3)

Consequently it is sufficient for us to consider the eigenval-
ues E,,(1,4 ) for A > 0. Our recipe (4.11) for these eigenvalues
becomes in this case

Enl(l/l)z _ |E(_”|l/2t_l + 34 'E(l)/3|3/2t,
where (5.4)
1= |E(_”|1/2t+/{ |E“’/3|3/2t3,

EV= —[4n+1P]",and E'V = E(1,n, 1} are given in
Table I1I in the Appendix. Equation (5.4} is useful for plot-
ting the graph (E,4 ) because £ and A are given explicitly in
terms of the parameter ¢ > 0. For numerical values the sim-
plest procedure is to solve the cubic equation for t by New-
ton’s method and substitute this into the equation for E.
Some values we find for £,,(1,4 } are shown in Table I togeth-
er with accurate values (in parentheses) which we have found
by numerical integration.

VI. THE QUARTIC ANHARMONIC OSCILLATOR

There has been a long tradition of using the anharmonic
oscillator to test approximation methods in quantum me-
chanics. Consequently the literature on this problem is now
vast'?: for a careful summary of the mathematical situation

and a good bibliography we recommend the recent review
article by Simon."? If we use the potential

flr)=4r + Br, (6.1)

then elementary scaling arguments yield the following equa-
tion for the eigenvalues E, (4, B) of the Hamiltonian
H= —A+f(r):

E, (A, B) = 0E, (A4 /0% B/d%), o>O0. (6.2)

Our approximate eigenvalues {given by the sum approxima-
tion (4.11)] obey the same scaling law. If we choose o = 4,
then we obtain the special case

E, (4, B)=A"?E,(1, BA . (6.3)

Because of Eq. (6.3) we need only consider the eigenvalues
E,;(1,4) for A > 0. The general equations (4.11) for the sum
approximation become in the present example

E. (LA)=2[LE®Vr+ 34 [2E¥/3)t?/2,
where (6.4)
1= [%E(2)]2t2 +/1 [2E(4’/3]3t3, t>0,

E®=(4n +2]—1), the pure quartic eigenvalues
E® = E(4, n, l)are given in Table IV in the Appendix, and,
for convenience, we have used ¢ in Eq. (6.4) in place of the £ 2
of Eq. (4.11). In this problem it is possible to solve Eqs. {6.4)
and obtain the following explicit formula for 4 in terms of
E=E,(1A)

4 PU¥IP?— [2E — (4E* - 3P?)'2}7)

Q°#[2E — (4E* —3P*}'?)°

where E>P=E(2,n,/)=(@4n+2/—1)andQ=E (4, n, ).
This is the nearest we have come to an explicit solution to the
quartic anharmonic-oscillator problem. In paper III we
proved for the ground state that formula (6.5) with » = 1 and
! = 0 yields (by inversion) E,,(1,4 ) for a given A with error
always less than 19%. Actually, the present more general re-

sult typically has far smaller errors: this fact is demonstrated
in Table II.

y (6‘5)

Vil. CONCLUSION

The energies of conservative quantum-mechanical sys-
tems may be characterized in terms of the extrema of the
Rayleigh quotient (¢, H¢)/(¢,) of the Hamiltonian
H = — A + uf(r). In the abstract theory of this problem,*®
the potential uf (r) is regarded as a perturbation of the kinetic-
energy operator — A. What we have tried to do is to look at

TABLE L. Comparison of some of the eigenvalues £ (1,4 } of the Hamiltonian H = — 4 — 1/r + Ar given by the kinetic-potential sum approximation, and

accurate values (in parentheses) obtained by numerical integration.

E, A =001 A=1 A=100

E, —0223 (—0.221) 1.361 (1.398) 46.189 (46.402)
Ey 0.148  (0.142) 5.059 (5.033) 116.83 (116.74)
Ey 0295  (0.286] 7.615 (7.575) 169.64 (169.50)
E, 0101  (0.102) 3.842 (3.851) 89.672 (89.850)
E, 0.250  (0.251) 6.563 (6.572) 146.58 (146.61)
E., 0.366  (0.366) 8.827 (8.829) 194.41 (194.43)
E,, 0205  {0.206) 5.513 (5.517) 123.54 (123.53)
E,, 0.324  (0.326) 7.880 (7.888) 173.79  (173.78)
E, 0427  (0.428) 9.960 (9.966) 218.06 (218.06)
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TABLE I1. Comparison of some of the eigenvalues E,,(1,4 ) of the Hamil-
tonian H = — A + r* + Ar* given by the kinetic-potential sum approxima-
tion, and accurate values (in parentheses) obtained by numerical integra-
tion.

E, A=001 A=1 A=100

E, 3.035 (3.036) 4.640 (4.649) 17.827 (17.830)
Es 11.435 (11.426) 23.323 (23.298) 99.040 (99.033)
Es, 20.235 (20.210) 47.007 (46.965) 204.82 (204.80)
E, 7.148 (7.151) 12474 (12.486) 50.691 (50.693)
E;, 15.756 (15.746) 34.229 (34.208) 147.32 (147.31)
Es, 24.742 (24.712)  59.836 (59.795) 262.46 (262.40)
E. 11.332 (11.336) 21.583 {21.595) 90.094 (90.097)
E,, 20.134 (20.126) 45.733 (45.721) 198.49 (198.48)
E., 29.297 (29.268) 73.064 (73.029) 322.04 (321.89)

this optimization process subject to the constraint
(¢, — A¢)/(¢h,1) = 5 = const. In order to do this we first have
had to consider sets of states which are composed of unions
of all “scales” of an n-dimensional subspace of L *(R?) con-
tained in & (H ). For potentials which are monotone increas-
ing this eventually leads to the following two-stage formula-
tion of the eigenvalue problem:

Fuls) = mf sup f,/,(,y([(ﬂf A://]‘/2)

||'//|| = 1
X yY(r)d>r, (7.1)
F,{v)= mi(f)l s+ 0.7"1(3)), {7.2)

where, as in the conventional theory, D,, is an n-dimensional
subspace of P (/,0)L *(R?) contained in & (H ) and P (1,0) is the
projector corresponding to the spherical harmonic ¥,™(6,¢ )
with m = 0. Thus the kinetic potentials £, ,(s) are generated
from the extrema of the scale invariant functional F (),
where

rw = v ([L=22]" Jotma.

The reason that we go to the trouble of reformulating
what is by now a classical problem of mathematical physics
is that the kinetic potentials £, (s) appear to behave very nice-
ly under transformations of the potential f(r). A way of sum-
marizing all the key constructive results of both paper IV
and the present article is to write the relation

zgtnfm _,~2gm s

i=1 =1
What we have done is to discover under what circumstances
“~ represents a bound or a “good approximation.” In all

(7.3)

(7.4)

TABLE IIL Eigenvalues E(1, n, /) of the Hamiltonian H = - 4 + r ob-
tained by numerical integration.

TABLE IV. Eigenvalues E (4, n, /) of the Hamiltonian H = — 4 + r* ob-
tained by numerical integration.

! n=1 n=2 n=3 n=4 n=>5
0 3.800 11.645 21.238 32.099 43.981
i 7.108 16.033 26.350 37.774 50.127
2 10.842 20.643 31.615 43.568 56.370
3 14.923 25.472 37.036 49.485 62.716
4 19.301 30.506 42.614 55.528 69.166
5 23.941 35.734 48.344 61.695 75.723

cases the approximate eigenvalue is obtained from the kinet-
ic potential by the final minimization (7.2): this latter step
can usually be carried out very simply and yields parametric
equations for the energy trajectory whose graph is
(v, Fy () v>0.

Although we have so far adopted a constructive ap-
proach in this work and we have strived to produce detailed
recipe solutions for large families of specific problems, there
does appear to be good reason to believe that some aspects of
abstract operator theory may benefit from an approach of
the type we have used. The most interesting object for
further study is probably the functional (7.3). Here I' () is
scale invariant and captures the trade-off between the kinetic
energy and the shape of the potential vf (r). Meanwhile, the
kinetic potentials £, (s) which derive from the “spectrum” of
I” (1) are not labeled by the coupling constant v and yet the
shapes of the £, (s) determine the energy trajectories F{v)via
the Legendre transformation (7.2). When v is small H may
have only a few or no discrete eigenvalues whereas there
always appear to be an infinite number of discrete extrema at
the bottom of the spectrum of I" (¢). An example of this was
discussed at the end of Sec. ITI above. These general observa-
tions along with the large number of interesting specific re-
sults so far obtained suggest that there may be more still to
gain by the further study of this geometrical theory and in
particular of kinetic potentials.
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APPENDIX: SOME COMPONENT EIGENVALUES AND
INEQUALITIES

TablesIII, IV, and V exhibit theeigenvalues E (g, n, [ ) of
the Hamiltonian H = — A + /4 for the pure linear potential
g = 1 and the quartic potential ¢ = 4; and also the eigenval-
ues E (L, n, 1) for the Hamiltonian H = — 4 + In(7). These

TABLE V. Eigenvalues E (L, n, /) of the Hamiltonian H = — A + In(r) ob-
tained by numerical integration.

! n=1 n=2 n=3 n=4 n=>5 ! n=1 n=2 n=3 n=4 n=>5
0 2.338 4.088 5.521 6.787 7.944 0 1.044 1.847 2.290 2.596 2.830
1 3.361 4.884 6.208 7.406 8.515 1 1.641 2.151 2.491 2.746 2.949
2 4.248 5.630 6.869 8.010 9.077 2 2.013 2.387 2.663 2.880 3.059
3 5.051 6.332 7.505 8.597 9.627 3 2.284 2.580 2.810 2.999 3.159
4 5.794 6.999 8.117 9.168 10.166 4 2.497 2.742 2.940 3.107 3.251
5 6.493 7.637 8.709 9.724 10.692 5 2.673 2.881 3.055 3.205 3.335
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numbers are needed by the sum approximation (4.11) when-
ever the potential contains the corresponding components.
With the numerical solution of Schrédinger’s equation it is
very helpful if the approximate location of the eigenvalue is
known. By using the method of potential envelopes [particu-
larly paper IV, Eq. (8.4)] it is straightforward to establish the
following inequalities which we have used to guide the com-
puter in its search for the eigenvalues:

34n + DIPP<E(, 0, 1)3[n+ 414177, (A}

32n + 1413272 3<E (4, n, 1), (A2)
In(n + 7} + Y1 + In2))<E(L, n, 1 )<In2n + [ — })
+ (1 + In(2)). (A3)
For the Coulomb potential ( = — 1) and the harmonic os-

cillator (g = 2) we have the following well-known exact re-
sults:

E(—1Lnl)= —[2(n+1)]7% (A4)
E@2,n1)=[4n+21—1]. (A5)
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Sensitivity analysis of stochastic kinetic models
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A formalism for sensitivity analysis of stochastic models describing fluctuation phenomena in
chemically reacting systems is developed. The method is not restricted to chemical kinetics and
can be used to analyze any model of a physical system whose state variables obey stochastic
differential equations with white noise. Expressions for the sensitivity coefficients and densities
are obtained. These expressions are suitable for direct evaluation by means of a stochastic
simulation in a computer. The relationship between these quantities and the response functions

studied in statistical mechanics is discussed.

PACS numbers: 05.40. + j, 82.20.Fd, 02.50.Fz

I. INTRODUCTION

Stochastic differential equations form the basis of wide-
ly used phenomenological models that describe the nonequi-
librium behavior of physical systems. In most investigations
in this area the emphasis is on obtaining either exact or ap-
proximate analytical results, which reduces considerably the
range of systems that can be analyzed. However, in recent
times there has been a growing interest in the study of more
complex systems where a numerical approach is necessary in
view of the difficulty in obtaining reliable analytical approxi-
mations or exact results. In such cases, the problem of how to
study systematically the dependence of the quantities of in-
terest on the parameters that define the model becomes high-
ly nontrivial. In applied mathematics and statistics, tech-
niques developed to address this problem are grouped under
the name sensitivity analysis. It is the purpose of this work to
develop a formalism for the sensitivity analysis of models
described by stochastic differential equations. In order to
facilitate this development a specific class of physical sys-
tems will be studied in detail. Thus, in the remainder of this
paper, the discussion will be focused on a model that de-
scribes concentration fluctuations in chemically reacting
systems.

The concentration of participating species in a chemi-
cally reacting system are fluctuating quantities due to the
aleatory nature of the intermolecular processes. The magni-
tude of the concentration fluctuations usually is of the order
of the inverse of the volume of the system. Thus, for macro-
scopic systems, the fluctuations are often negligible and the
deterministic kinetic equations provide an accurate descrip-
tion of the behavior of the concentrations. However, there
are situations in which, even for macroscopic systems, fluc-
tuations are important. A typical case occurs when chemical
instabilities develop in the system. In this case large-scale
fluctuations, spanning macroscopic volumes comparable to
the volume of the system, which normally are very rapidly
damped, can be amplified and cause a transition to a state
distinct from the initial one.! Thus in the modelling of kinet-
ic processes allowance should be made for the inclusion of
fluctuation effects.

A convenient framework for the description of fluctu-
ations in chemical kinetics involves the use of stochastic dif-
ferential equations.” These equations are similar in structure
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to the deterministic ones, except for the addition of noise
terms. The noise terms attempt to describe the changes in the
concentrations that happen on a much faster time scale than
the relaxation times for the chemical processes under study.
These fast changes are caused by reactive molecular colli-
sions. The strength of the noise depends on the instantaneous
values of the concentrations since the probability of a given
reaction occurring in the system depends on the concentra-
tions of the species involved. The parameters that enter in
those equations are the same that enter in the deterministic
discussion: rate constants, initial values of concentrations,
etc. The quantities of interest here are not the solutions of the
equations themselves but the average values, variances and
correlations of the concentrations. Here, as in the determin-
istic case, the question of the sensitivity of these quantities
with respect to changes in the parameters controlling the
chemical processes naturally arises. In mathematical model-
ling the study of such questions is known as sensitivity analy-
sis and it plays an important role in the understanding and
optimization of models.? Consider the deterministic case,
where the concentrations obey differential equations ob-
tained from the mass action law. In its simplest form the
sensitivity analysis of this system involves the computation
of the derivatives of the concentrations with respect to the
parameters that define the system.* These derivatives are
evaluated assuming that the concentrations are known by
solving the kinetic equations for a set of reference values of
the parameters. Thus, the sensitivity coefficients, defined as
first-order derivatives of the concentration with respect to
the parameters, are just the gradients of the concentration
evaluated at a reference point in parameter space.

A detailed discussion of possible applications of infor-
mation obtained from sensitivity analysis in deterministic
chemical kinetics and in scattering theory has been present-
ed elsewhere. >

The main objective of this paper is to develop a method-
ology for the sensitivity analysis of stochastic chemical ki-
netics. However, the resulting formalism is not restricted to
kinetic problems. It provides a framework for sensitivity
studies of any system whose state variables obey stochastic
differential equations with either additive or multiplicative
white noise. Only minor modifications are required to in-
clude more general stochastic equations. The sensitivity
analysis problem in stochastic chemical kinetics can be stat-

© 1984 American Institute of Physics 2716



ed as follows. Suppose that for a certain set of values of the
parameters, the reference values, all the expectation values
of products of the concentrations can be determined. Such
expectation values will be called correlation functions in this
discussion. They are obtained by solving the stochastic dif-
ferential equations of chemical kinetics and averaging ap-
propriate products of solutions. It must be noted that the
correlation functions are the observable quantities in sto-
chastic chemical kinetics. If one is interested in the sensitiv-
ity of a certain correlation function with respect to variations
in the parameters of the system then one should begin by
studying the sensitivity coefficients of this particular correla-
tion function, that is, its gradient in parameter space. In or-
der to compute these derivatives, their expressions in terms
of concentration correlation functions must be obtained.
This task is accomplished in this work. The generalization to
the case of time-dependent parameters, involving the con-
cept of sensitivity densities, is also studied.

The use of stochastic differential equations in chemical
kinetics is discussed in Sec. II. The sensitivity analysis for
stochastic kinetics is developed in Sec. III. In Sec. IV the
sensitivity analysis for stochastic kinetics is further investi-
gated by considering the Fokker-Planck and related distri-
butions associated with the stochastic differential equations
of chemical kinetics. Section V considers the sensitivity anal-
ysis of the quasilinear approximation to stochastic kinetics.
Finally, a simple application of the sensitivity formulas de-
rived in Secs. ITI and IV is presented in Sec. VI.

. STOCHASTIC DIFFERENTIAL EQUATIONS IN
CHEMICAL KINETICS

In a chemically reacting system concentration fluctu-
ations are always present because of the randomness that
characterizes molecular processes. Despite the fact that nor-
mally the magnitude of these fluctuations is inversely pro-
portional to the size of the system there are situations where
fluctuation phenomena are important. This is the case when
chemical instabilities develop in the system, for example,
when initially the system is close to an unstable steady state.”
If the system possesses multiple steady states then the transi-
tion to one of these states will be driven by the fluctuations
(i.e., the decay of the unstable steady state is a fluctuation
phenomenon). A particularly interesting case is the one of a
system in which a stable steady state becomes unstable as a
parameter is varied. A common situation is the critical bifur-
cation, where there is only one stable steady state S, when a
parameter p is smaller than a critical value p.. When p is
increased beyond p., S, becomes unstable and two stable
steady states S, and S, appear.” Obviously stable and unsta-
ble steady states here refer to regimes where fluctuations are
negligible, as the system approaches an unstable state the
fluctuations are magnified and lead the system towards one
of the stable states, thus causing decay of a state that, albeit
unstable, would be steady in the absence of fluctuations.

These considerations indicate the need for an adequate
framework for describing the fluctuations that yield the de-
terministic limit in a simple way. Such a framework is pro-
vided by using stochastic differential equations to describe
concentration fluctuations in chemical kinetics. For a well-
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stirred mixture of N species the equations for the N concen-
trations p,(t ) are

dp; N
%:Ri(p, o)+ 3 Pylp, alfsle) pil0)=p0 21

where {£,(¢)} is a delta correlated Gaussian stochastic pro-
cess’ (i.e., white noise), with

(Ee)) =0, (&(r)g;(t) =8,6(t—1'). (2.2)
It is well known that a stochastic differential equation like
Eq. (2.1) is meaningless without an additional interpretation
rule.® The required rule, compatible with the physics of this
problem, is that Eq. (2.1) be interpreted as a stochastic differ-
ential equation in the sense of Stratonovich.” From now on
all stochastic differential equations appearing in this work
will be interpreted in this sense unless accompanied by an
explicit statement to the contrary.

The symbol a in Eq. (2.1) denotes the parameters that
enter in the definition of the chemical rate vector R. The
matrix P (p, o) can be found from the fluctuation-dissipation
analysis of Keizer'® and Grossmann.'® Thus

N
kZ Py(ps @)Py(p, o) = Qy(p, ), (2.3)

=1
where Q'is a symmetric, positive semidefinite matrix that can
be written in terms of the forward and backward rates for the
elementary reactions included in the rate vector R in Eq.
(2.1). Assuming that the concentrations are expressed in
(number of molecules)/(unit volume) and that the forward
and backward rates #, and 7, for the k th elementary reac-
tion, are measured in (molecules/unit volume}/(unit time)
the rate vector R, and the variance matrix Q can be written
ale

Rip.o)= 3 valilp, o) — ulp, o) 2.4)
0,(p, a) = iV 3 varalile, @) + e ol (29)

where M is the number of elementary reactions, v, is the
stoichiometric coefficient of species j in the reaction &, and ¥
is the volume containing the chemically reacting system un-
der study.

From a mathematical point of view the stochastic pro-
cess £, (¢ ) induces a new stochastic process p, (¢ ) through the
mediation of Eq. (2.1). The statistical properties of &,(t ) plus
the dynamical properties incorporated in Eq. (2.1) (including
initial conditions) uniquely determine the statistical proper-
ties of p, (¢ ), which allows for the computation of average
values, variances and correlation of the concentrations. Phy-
sically Eq. (2.1) assumes that the intermolecular processes
(reactive collisions) that give rise to the fluctuations occur on
a time scale much faster than the relaxation time predicted
by the mass balance equation when fluctuations are neglect-
ed [Eq. (2.1) without the stochastic driving term]. The model
defined by Egs. (2.1)~(2.5) constitutes an independent, self-
consistent formalism for the description of concentration
fluctuations. In addition, a rigorous link has been estab-
lished between the stochastic model adopted here and an-
other popular phenomenological description of fluctuation,
the birth and death formalism.!! Essentially, it can be shown
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that Eq. (2.1) constitutes a diffusion approximation to a cor-
responding master equation in the birth and death formal-
ism."” The larger the system is, the better is the approxima-
tion.

The question of whether stochastic differential equa-
tions provide an appropriate description of fluctuation phe-
nomena in chemical kinetics has been the subject of consid-
erable debate. Recent developments'? reinforce the author’s
belief that stochastic differential equations of the type stud-
ied in this work do provide an adequate description of fluctu-
ations in chemical Kinetics even though the precise prescrip-
tions used to obtain R, and F;, [see Eq. (2.1)] might have to be
modified. In this connection it must be emphasized that the
main results of this work, namely the general expressions for
sensitivity coefficients and densities, are independent of the
specific dependence of R; and P; on the concentrations. The
recent developments mentioned above refer to an extension
of Onsager’s thermodynamic fluctuation theory to nonlinear
systems that has been obtained on the basis of statistical me-
chanical considerations by Grabert et al.!**" In this ap-
proach fluctuations are described by a Fokker—Planck equa-
tion which implies an underlying stochastic description
using nonlinear stochastic differential equations of the same
form as Eq. (2.1). An application of this formalism to the
study of fluctuations in reversible chemical reactions can be
found in a very recent publication of H. Grabert et al.'*

. SENSITIVITY ANALYSIS OF STOCHASTIC KINETICS

When modelling physical systems one is confronted
with the question of how sensitive the behavior of the system
is to changes in the values of the parameters that define the
model. Sensitivity analysis is a very general methodology
developed to deal with these questions.® In its simplest ver-
sion the essence of the method consists in extracting from the
sensitivity coefficients all possible information about the re-
sponse of the system to variations in the input parameters.
These coefficients are, by definition, the derivatives of the
state functions that describe the behavior of the system with
respect to the input parameters. In the case of chemically
reacting systems the state functions that describe the kinetic
behavior are average values of functionals of the stochastic
variable p(# ), which represents the instantaneous (and fluctu-
ating) values of the concentrations of the chemical species.
The purpose of this section is to obtain expressions for the
sensitivity coefficients of such quantities. The generalization
of these results to the case of time-dependent parameters is
also discussed. This involves the computation of sensitivity
densities,'* which here are defined as functional derivatives
of average values of functionals of p(z ) with respect to the
time-dependent parameters.

Previous work on sensitivity analysis of chemical kinet-
ics focused on the deterministic situation when the concen-
trations satisfy rate equations like Eq. (2.1) with the noise
terms absent. In these works the fundamental quantities
from the point of view of sensitivity analysis are the sensitiv-
ity coefficients of the concentrations evaluated at a given set
of reference values of the parameters. They are expressed as
functionals of the concentrations which are solutions of the
rate equations with the parameters set at their reference val-
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ues.’ The quantities of interest in the stochastic case are not
the solutions to Eq. (2.1) themselves but averages of those
solutions like the average value and the variance of p; (¢ ),

pilt) ={pilt)), oit)=((pilt)) — Cpe 2 (3.1)
The sensitivity coefficients of the average values of function-
als of p(r ) are themselves average values of related function-
als of p(r). Let F[p] be an arbitrary functional of p(¢) with
(F[p]) its average value. The parameters that enter in Eq.
(2.1) are denoted by @,,, p = 1, ..., P, where in general P> N
(&V is the number of chemical species). For future conve-
nienceitisassumedthata, , ,_y =p},i=1,..., N, wherep{
is the initial value of the concentration g, (¢ ). The sensitivity
coefficient of (F [p]) with respect to a parameter a,, is de-
fined as

Sy = (Flpl). (3.2)

7}
oc,,
Besides an implicit dependence on the parameters through
p, F[p] can also explicitly depend on a, thus

3J F SF [p] dpilt)
—<F[p])=< > s < Lpl PN (3.3
da, da, = dpi(t) Oda,
If F[p] depends on a,, only through the concentrations then
the first term in the right-hand side of the above equation is
zero. An expression for dp,(t }/da, can be obtained by means

of the Green’s function method introduced in the sensitivity
analysis of deterministic kinetics.* Thus,

ap,(t Al al
Z G,(t, 0M;, + _Z} fds G,(t, 5)
dR;
><( a) + z T o (Pl @l s)) (3.4)
Bap
Above A, = dp;/da,, A;, = 0if a, is not an initial value

(ie.,if p<P — N)and/l 5 ;ifp =P — N 4 i, thatis, ifa,
is an initial value. The Green s function satisfies

—g;G.-,-(z,s)=;(Z§k" bl e+ 3 a;k ot )
X Gylt, 5) + 8,8(t — 5). (3.5)

From Eq. (3.5) it follows that
6, 1,5)= 010 =53 Upl11U ;) (3.6

where Uj(¢) obeys an homogeneous differential equation
like Eq. (3 5) w1thout the delta function term and with initial
condition U,;(0) = 8. In Eq. (3.6) U ~'(s) is the inverse of the
matrix U (s) whose elements are the U (s).

In order to combine Eqgs. (3.3) and (3.4) it will prove
useful to relate the Green’s function G, s) to the functional
derivative of the concentration p,(t ) w1th respect to the noise
£, (s). This relation is obtained by proceeding in a manner
analogous to the one used to obtain Eq. (3.4). Thus, comput-
ing the functional derivatives of both sides of Eq. (2.1} and
solving the resulting linear differential equation for
8p.(t )/8&  (s) with the help of the Green’s function it follows
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that

Op;(t)
= Gt S)P‘k(P(S)’ (!). (37)
8E(s) EJ: ! !
By solving Eq. (3.7) for G;(¢, s) and substituting into Eq. (3.4)
the right-hand side of Eq. (3.3) can be written as

SFlpl , 1a
Z st< agl(s) hlp(p(s)’ g(S), a)>, ( )
where
IR,
(9 8 ) = 5P ol 4,60 + 5 (pish o
oP,
2 3a, (pis), u)ék(S)) (3.9)

Further manipulations can cast Eq. (3.8) into a form that
does not involve 8F [p]/8&;(s). It is convenient to eliminate
this functional derivative since its evaluation demands ob-
taining G,;(¢, 5) which satisfies another stochastic differential
equation, Eq. (3.5), independent {although related) to Eq.
(2.1).

Suppose H [£ ]is an arbitrary functional of the Gaussian
stochastic process §( ), then the following identity (proved in
Appendix A) holds:

(ESH [E]) = <%’${%>
k

Using the above identity Eq. (3.8) can be written as

S fas( Ly lpt). g0 )

= Jim 3 st<F [ p1Es + €lhy (pls), Es) ). (3.11)

Equation (3.11) is established by applying Eq. (3.10) to the
expectation value in its right-hand side and noticing that the
functional derivative of 4, (p(s), &(s), o) with respect to
£.(s + €), €> 0, is zero since &(s) and £(s + ¢) are independent
variables and p(s) depends on §(¢ ) only for <5 [a consequence
of the fact that Eq. (2.1) respects causality].

The final expression for S is

ST = (G 101) + 3 [ds(F (916, i £, ),
! (3.12)

where the notation £,(s*) indicates the limit prescribed in
Eq. (3.11). It must be pointed out that the evaluation of the
sensitivity coefficient S [Eq. (3.12)] does not require the
solution of any other differential equation besides Eq. (2.1)
for the concentrations. In particular, it is not necessary to
obtain the Green’s function G, (¢, s). This is to be contrasted
with the deterministic case* where the evaluation of the sen-
sitivity coefficients requires not only the concentrations but
also the deterministic analog of the Green’s function G,(t, s).
If the parameters are allowed to be functions of time
then the quantities of interest in sensitivity analysis are the
sensitivity densities. These are functional derivatives of func-
tionals of the concentrations with respect to the time-depen-
dent parameters. For simplicity in this work it will be as-
sumed that R,(¢) and P, (¢) are functions of p(¢) and aft).

(3.10)
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However the following discussion can be extended to more
general cases, the only restriction being that both R,(¢) and
P, (t) must be causal (or nonanticipating) functions [i.e.,
neither R, (¢ )or P, (t ) depend on p(s) for s > ¢ ]. The sensitivity
densities are defined as
ji- (2ELe1)
Sa,(t)

Proceeding as before one obtains

an e |
D,,(t)—<——6ap(t) ) + S DIy ple 51, a((t3))l>4)

The assumption that R, and P,, are functions of p and a was
used above. This assumption implies

(3.13)

j __OR; _
5ap(t) (P(S), (I(S)) , = aap (p(S), Q(S))(S(s t), (315)
o, 9P, B
S (1) (pls), als)) =%, (pls), cu(s)8ls —2). (3.16)

If Fis a functional of both p and a then §F /6a,, (¢ )|, is to be
calculated by keeping p fixed while allowing « to vary. Thus,
unless F [p] is explicitly dependent on a, the first term on the
right-hand side of Eq. (3.14) vanishes.

In general F [p], S and D /(¢ ) will have to be numerical-
ly evaluated. The procedure can be briefly outlined as fol-
lows. A particular realization of the stochastic variable £%(¢)
is called a sample trajectory. It will be denoted £°(¢ ), where a
is an index labeling the sample trajectory in question. The
sample trajectories §°(¢ } can be obtained by means of a ran-
dom number generator. For each sample trajectory £%¢ ) nu-
merical integration of Eq. (2.1) yields a sample trajectory
p“(t) which is a particular realization of the stochastic vari-
able p(t). Thus, if E [p, ] is a functional of the stochastic
variables p and § then

{ 1 i a a

(Elp. 8D = lim - 5 E[p" &1.

a=1

(3.17)

Therefore, after generating the §°(¢ ) and obtaining the p*¢)
from Eq. (2.1) {F[p]), S}(¢) and D [{(r) can be obtained by
means of Eq. (3.17).

Before concluding this section some further remarks on
the Green’s function G, (¢, 5) are in order. The average value
of this function is the concentration response function. It
gives the linear response of the concentration of species i to
the presence of a weak source of species j. In order to see this,
consider Eq. (2.1) with species sources added to the right-
hand side

dp; il

prake Ri(p’,a) + ¥ Pylp’, alg;t) + Jit).  (3.18)
j=1

By p] it is meant the concentration of species / when sources

are present. The concentrations in the absence of sources will

be just p,. If the sources are sufficiently weak then

o N (5P:!(t)
Pl =pi)+ 3 Jas 575

Now, it follows from Eq. (3.18) that 8 p(r )/6J,(s) obeys a
differential equation that is identical to the one obeyed by

)J,(s) + U3, (3.19)

J=0
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G;(t, s) if in the latter p,(t) is replaced by p](¢ ) wherever it
occurs. Therefore, it is clear that

_ 8pit)
57,05

G,lt, 5) (3.20)

J=0

From Egs. (3.19) and (3.20), to first order in J,

N

(plle)) = (pilt) + 3 |ds(G,lt, sIls) + 2(J°). (3.21)

j=1
Equation (3.21) allows the identification of (G/;(¢, s)) as a
concentration response function. Thus, for example, if a
small amount of species j is introduced at ¢ = #,, that is, if
Ji(t) = A8,6(t — t,), then the change in the average concen-
trations, to first order in A, will be

8 {pilt)) =A(G;(t, to)). (3.22)

In fact (G(z, 5)) is the equivalent in this problem of a re-
sponse function introduced by Martin, Siggia, and Rose in
their study of the dynamics of classical stochastic fields.'® In
the deterministic limit, when fluctuations are neglected [for-
mally obtained by letting V— 0 in Eq. (2.5) which leads to
P,; = 0] the Green’s function G (2, s) becomes equal to the
Green’s function introduced in a previous work on the sensi-
tivity analysis of deterministic kinetics.*

From an analysis similar to the one carried out above
for the Green’s function it can be concluded that the sensitiv-
ity densities D 5 (¢) are generalized response functions.

V. SENSITIVITY ANALYSIS AND THE FOKKER-
PLANCK EQUATION

A useful approach to the study of a stochastic differen-
tial equation like Eq. (2.1)is to try to determine the probabil-
ity density P,{y, ¢) such that the joint probability that the
pilt), i =1, ..., N, assume values in the intervals [ y,,
¥; +dy;]isgivenby P,(y, t )dy. In the case of Eq. (2.1), P\(y,
t) is the solution of a Fokker—Planck equation. The knowl-
edge of P,(y, ¢} allows the computation of quantities like

(F (p(t))), where F (p(¢ ))isafunction of the concentration vec-
tor p(t), thus

<nwm=jwamnnw

An equation for P,(y, ¢ ) can be obtained by first noticing
that'®

Py, t)=A(8(y, —pilt )-8 (yn —pnlt 0.

Substitution of the above expression for P,{y, t) into the
right-hand side of Eq. (4.1) leads to an identity. Let
8(y — plt)) =8 (y, —pit))6(yw — pn(t))- Then

20

(4.1)

(4.2)

4.3)

3 3
EPMJP=—25;@w—Mm

Now using Eq. (2.1) to eliminate d p,{t )/dt and employing
Eq. (3.10) to deal with the term proportional to &(¢ ) it follows
that
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%Amn=~;j%mwmmmmm
+%w§%mmmw
xﬁ%mmﬂmmmm. 4.4)

In obtaining Eq. (4.4) the following identity was used

M: lim _1_[6Pi(t+e) 6Pi(t_€)]

8E(t) 0" 2 O&,(t) & (1)

=%mmmmm (4.5)

The first equality above is the definition of the equal time
limit of 8 p; (¢ )/6&, (s) according to the Stratonovich calcu-
lus, and the second equality is a consequence of Eq. (3.7).
Equation (4.5) is an important identity which will be used
many times in this section.

The initial condition for Eq. (4.4) is just

Py, 0)=6(y —p°). (4.6)

The boundary condition necessary to solve Eq. (4.4) can be
obtained by demanding that P,(y, # ) be normalizable, that is

f@ﬂmm:L

In the same way that P,(y, ¢ ) was introduced in order to
evaluate (F(p(t))) it is possible to introduce a multiple time
probability distribution P, (y,, t,;-¥,, ¢,) such that'’

(Filple)))-F, (p(z,))

=fdhﬁ[@ﬁﬂwathAhﬁﬁanﬂﬁ
(4.8)

Therefore, P,(y, t1; --; ¥a» . )dY,--dY, is the joint probabil-
ity that the p,(¢,,) assume values in the intervals [ ., Vi
+dp,;, ] Like P\(y, t) the multiple time distribution

P, (yt, - Y., ) can also be written as an average value of
delta functions

Pyt ¥ t)= (8ly, — p(t))-bly, — plt, . (4.9)

In order to derive a relation from which explicit expressions
for the P,(y,, t1; ...; ¥.» ) can be obtained it is useful to
notice that it can be assumed without loss of generality that
t,>t,> > t,. This is an obvious consequence of Eq. (4.9}.
For example, if in the left-hand side some of the time varia-
bles are equal then the right-hand side will be reduced to a
product of deltas multiplied by a multiple time distribution
that depends only on the distinct time variables. For exam-
ple, suppose that ¢, = ¢, =t with > t; > -~ >1,, then

PAYyut; Y0ty o5 ¥ )

(4.7)

=8(y1 — Y2)Pu _ 1 (Yoo 6 ¥35 135 i3 Vs B )- (4.10)
In Appendix B, it is shown that

Pn(yh tl; ey yn’ tn)
=G(Y1, ;Yo 2P 1 (Y2 85 3 Vs £n)- (4.11)

InEq. (4.11), G (y,, t;; ¥, 1,) is the Green’s function associat-
ed with the Fokker—Planck operator [see Eqs. (B2), (B8), and
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(B9)). Therefore, it is clear that once Pyly, t ) and G [y, £;; Y2,
t,) have been found, all the multiple time distributions can be

obtained from Eq. (4.11). . _
The sensitivity analysis of stochastic chemical kinetics

may also be studied in this framework. Thus in this section
the sensitivity coefficients and densities of
(F\(p(t,))-F,(p(z,))) will be studied using this alternative
formalism. It will be assumed that F;(p(¢;)) depends on a
only through p(#;) and that ¢, > t, > -~ > ¢,,.

The sensitivity coefficients and densities, as defined in
Sec. III [Egs. (3.2) and (3.13) with
Flp]l = F(p(t,))F,(p(t,))], are then

S;I: = f dYI"'dy'l Fl(yl)'"Fn (Yn )S;(YI) [y s ¥ by ), (4'12)

Dﬂ’) =JdY1"'dYn Fi(y)F,(y, )D:(t MATRTHESS AR MK
(4.13)

S, and D ; are the sensitivity coefficients and densities of the
multiple time distribution P,,

So¥u by 5 Yo 1) = Po(yi ti; o5 ¥ns 1a)s (4.14)

P

Pn (yl’ tl) RYH f tn )'
(4.15)

o
DRt|yy, bty i Yoo 1) =
p( ¥ y ) (Sap(t)

Equation (4.11) implies a recursion relation for the §'; and
the D,

S;(Yp Ly o3 Yoo ba)
=G (Y, 15 Y2 IS, (Y20 125 o Vs 1)

ad
+ ( Gyt Yo tz))Pn— Y2 b3y o3 s 1)
da,
(4.16)
D;(t |YI’ tl; oy Yo tn)
=Gy, 15 Y2 tz)D;_ "t |¥25 225 oo} ¥ous 8)

G yu 1y ¥ tz))Pn ¥ s Y 1),
(4.17)

- ( &:(t )

Thus once the sensitivity coefficients and densities of P,(y, #)
and G (y,, t,; ¥,, 1,) have been obtained all the others can be
determined through the recursion relations.

Both P\(y, t) and G (y,, t; y,, t,) satisfy linear diffusion
equations. Thus the sensitivity densities and coefficients of
P, and G can be obtained by using a version of the Green’s
function method* recently developed to deal with reaction-
diffusion equations.'*'® The basic idea is to determine the
sensitivity coefficients by computing appropriate derivatives
(functional derivatives) of both sides of the equations satis-
fied by P, and G thereby obtaining a linear differential equa-
tion for the sensitivity coefficients (densities). This equation
can be integrated with the help of a Green’s function which
in this case is just G, the Green’s function defined in Eqs. (B8)
and (B9). Thus
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a3
S::(yrt)=z/?’ipa_x-

t i

(G(y, 5; %, 0))

x=p"

+ f dt ’J’ dx Gy, t; x, t'\L(x,t")P(x, "),
(4.18)

D}isly. 1) = 8613 4, b‘i— (G (3 £, 0)

x=p"

+ f dx Gy, t; x, s)L (x, s)P,(x, s). (4.19)

For the sensitivity coefficients and densities of the Green’s
function one obtains

Gy, t; ¥ 1)

P

= J- dt] dx Gy, t; X, t)IL(x, )G (X, 1Y, 1), (4.20)

1)
Sa

p(

) G(yifi; Y2 1o

= fdx Gly,tyx, t)L(x,t)G(x, 1;y, 1) (4.21)

The differential operator L (x, t ) introduced above is just (d /
0a,)D (x, t ), where D (x, t ) is the Fokker-Planck differential
operator defined by Eq. (B2), its explicit expression is

Lo/ 1) = = 3 2{F 1) 22 Rt )

i

1 d a
+3 gz Tx,[(ﬂu—p Pyix, alt )))

J
X ax

(f(x, 2)Py (%, &t)) + P (x, aft))

k

3 ( 3
X S0 e) oy P, (x, aft )))]. (4.22)

Equations (4.12)-(4.22) provide the basic algorithm for car-
rying out a sensitivity analysis of systems described by sto-
chastic differential equations in the Fokker—Planck equation
approach.

At this point it is necessary to demonstrate the equiv-
alence between Eq. {4.13) and Eq. (3.14) for the sensitivity
density D [(t). Equation (3.14) with
Fpl = F\(p(t,))-F,(p(t,)) can be written as

D)= f dyy-dy, F\(y)F, (Y |y t; 5 Yar 1),
(4.23)
with

Lo 1Y0 155 ¥ar 1) = 3 (6ilt ") (pl2), &2 ), atft)

X8 (y, — plt1))8 (v, — plt,)).
(4.24)

Equation (B10) with x =y, # =1¢,, and s = ¢, leads to
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];(t IYI’ tl; "'; Yn’ tn)

=Gy, ;¥ tz)I;- ](t |Y2: 1 e ¥ns L)

+ f Car f dx Gy, 1y %t} (R (x, plt’), E(¢")

X &t ple). ), alt)

X6 (y2 — plt)8 (y, — plt.)))-

From Eq. (4.25) one obtains
I;(t lyl’ tb ey er trz)
=Gy, t5 Y t2)1;_ (

(4.25)

lyZ’ t2; ceey yn’ tn)

+6(t—t2)fde(y,, t;x,t)

(ong,

XP,,(X, t’ y2, IZ’ ey Yn! tn )'

In Eq. (4.26), 8 (t — t,) is the Heaviside step function,

gt —¢t)=1ift>t,and 8 (¢t — t,) = 0ift<t,. Equation (4.26)
showsthatl ) (t |y, t;;...;¥,,t,)isequal to D ,(t |y,, £);-..; ¥,
t,) defined by Eq. (4.17). First notice that both 7 ; and D , are
zero if t>t,. For t, > t > 1,0, Eqgs. (4.17) and (4.21) again
show that D, =1, If ,> ¢ then

+L (x, ))

(4.26)

Y 54121 P78 THND Y

=G ¥y, 15 Yo, M 7 (|¥2r 135 3 Yon 1a)s (4.27)
Dty t s Ynsty)

=Gyt ¥y, N 1¥2 15 oo Yo 20)- (4.28)

Now if £,>>1,>0 0onehas /= ' =D}~ . Proceeding in
this way it remains only to prove that I, = D , to establish
that 7; = D ,. From Eq. {4.24) and Eq. (B10) withx =y,
and s = ¢ (assuming ¢, > ¢ ) one gets

IMtlyy 0) = f dx Gy, 1y %, 1)

( 5(:2 —+sz))( t).
(4.29)

Integrating by parts the term proportional tod (¢ )in the right
hand of Eq. (4.29) and comparing with Eq. (4.19) shows that
I)(t|y,t) =Dy, t,). Thus these two distinct methods
for computing D ;(¢) yield the same result therefore estab-
lishing the equivalence of the two approaches. The method
developed in this section seems better suited for analytical
investigations while that discussed in Sec. I1I is more appro-
priate for numerical studies.

V. QUASILINEAR APPROXIMATION

In chemical systems the magnitude of the fluctuations
is inversely proportional to the volume containing the che-
mically reacting system. This is reflected by the factor 1/Vin
the right-hand side of the equation that defines Q,(p, o) [Eq.
{2.5)]. Usually 1/¥is very small when compared with typical
concentrations (in this work concentrations are measured in
number of molecules/unit volume and so the fluctuations
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are of small magnitude). For large systems the fluctuations
will be important only in the neighborhood of a chemical
instability."” Thus away from a chemical instability an ex-
pansion in powers of 1/¥ should provide a reasonably good
description of the fluctuations. The zero-order solutions of
Eq. {2.1) are just the deterministic concentrations which sa-
tisfy the usual rate equations [Eq. (2.1) with the noise term
absent). To lowest order in 1/¥ this quasilinear approxima-
tion coincides with Keizer’s treatment of concentration fluc-
tuations based on generalized fluctuation-dissipation as-
sumptions.'®

The quasilinear approximation should be useful from a
practical point of view because it provides a relatively simple
way of obtaining estimates of the magnitude of fluctuations.
Since it predicts its own failure as a chemical instability is
approached, it also functions as an early warning system for
detection of regions in parameter space where fluctuations
are potentially important. Thus a detailed sensitivity analy-
sis of the quasilinear approximation is called for and will be
developed here.

The first step in obtaining the quasilinear approxima-
tion consists in decomposing p into deterministic (or syste-
matic) and fluctuating parts,

pilt) =u(t)+£(t), (5.1)
where

du, o

—=R,(w, a), u(0)=p;. (5.2)

dt
From Eq. (2.1) it follows that

dd—f =R, (u+f, a)—R;(u, o

+ 2 P u+f alf,(t), f(0)=0. (5.3)

In order to obtain the quasilinear approximation to { f;(¢)},
one averages both sides of Eq. (5.3) [using Egs. (3.10) and
(4.5)] to obtain

% (fle)) = (Rifu + £, @) — R,{u, a))
+{(T;(a+f, a)), (5.4)
where
o) o == 3 = (p, )Py (ps (5.5)
k 8 P

Collecting terms up to first order in 1/¥Vin Eq. (5.4) one gets

d _ < 9R,
o (file)y = ; 2, a)( f{r))
+ Ti{u, @), (£i(O) =0. (5.6)

Thus, to first order in 1/V,

Ae) =S [ds K, ), ) (5.7
The Green’s function K (¢, s) satisfies
d = —_—
ZKij(t’ s)= > B, ), alt K, (8, 5) + 8,;6(¢ —5). (5.8)
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This Green’s function plays a crucial role in the sensitivity
analysis of deterministic chemical kinetics* and it turns out
to play an important role in this approximate description of
fluctuation phenomena.

The correlation function C; (¢, 5) = { £;(¢) f;(s)) canalso
be obtained in a similar way. First C;;{z, ¢ jshould be obtained.
From Eq. (5.3) it follows that to lowest order in 1/V

4

C,lt 1)
_ Z( Q)Cy (e 1) + Zf: (u, @)C,(t, :))
+ Qij(u) (1), Ci (0) 0) =0. (59)

In Eg. (5.9) Q;; is the symmetric matrix defined in Eq. (2.5).
With the help of the Green’s function X, Eq. (5.9) yields

Cylt, 1) = %: f ds Ky (¢, 5)Qu (uls), als)K(t, 5).  (5.10)

For ¢ > s one has (again to lowest order in 1/¥)

JR.
9 its)= 3 aRl (u(t ), ot ))Cy (1, 9)-

k uk

(5.11)

Equation (5.11) is to be solved subject to the condition that
C,,(s, 5) be given by Eq. (5.10), thus

Clt,s)= Z K (2, 5)C (s, s). (5.12)

The group property of the Green’s function can be used to
rewrite Eq. (5.12). This property implies the following identi-
ty,* t>5>7)

> Kyt K (s, 1) = (5.13)

K,(t, 7).

The final expression for C, (¢, s) is

Gt =3 f dr Ky (t, AQu(ulr), alr)K s, 7). (5.14

Since C, (£, s) = Cj(s, t) it is clear that Eq. (5.14) is in fact
valid for any t and s.

The breakdown of the quasilinear approximation near a
chemical instability is directly related to the behavior of the
Green’s function K (¢, s). This Green’s function provides in-
formation on the stability of the solutions to Eq. (5.2). In the
Lyapounov linearized stability analysis of kinetic equations
like Eq. (5.2), one usually studies the eigenvalues of the ma-
trix (OR,/du;)(u, a) evaluated at a particular steady state so-
lution. The sign of the real part of the eigenvalues is the basic
stability criterion.’ Thus through Lyapounov’s stability
analysis a direct link is established between the asymptotic
stability properties of u(¢) and K (¢, s). This connection
between sensitivity analysis and linearized stability theory
was investigated in detail in a study of limit cycles in chemi-
cal oscillators.®

The remainder of this section will be dedicated to ob-
taining expressions for the sensitivity coefficients and densi-
ties of { £;(¢)) and C,;{t, 5) [Eqgs. (5.7) and (5.14)]. Although
the expressions derlved in Secs. III and IV could be used it is
simpler to take advantage of the explicit expressions for { f;)
and C;; in terms of # and K. The procedure relies on the fact
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that the sensitivity coefficients and densities of ¥ and K have
been obtained in previous studies of the sensitivity analysis of
deterministic chemical kinetics.* For completeness the ex-
pressions for these coefficients and densities in terms of the u
and K themselves are transcribed here. They are obtained by
taking appropriate derivatives of Egs. (5.2} and (5.8} and
solving the resulting linear equations with the help of the
Green'’s function K. Thus,

» K .,(2,0)
+E f ds K1, 5) (u(S), a), (5.15)
n_ Su,(t) _ ,
Sip(t’ t )— 6ap(t') —;(’{jpa(t ))
), alt DKt 1), (5.16)
K (5= 3 f ds' K, (¢, s)K (', )
oa, & R A
x(A,,(’ Ry uis a)), (5.17)
ou,
)

—2 _K.ts)=" | a5 K.t )K,s,
5ap(t,) 1]( S) ; s k( ) Ij(s S)

U,

(ufs’), a(S')))-
(5.18)

In Eqs. (5.17) and (5.18) 4, (s') and 4, (s', ¢ ) are differential
operators that act on functions of u and o

X (Ap(s’, t)

(5.19)
A1) =8t — 1) -2 + TS, 0112 (520
? aap k auk
The sensitivity coefficients of interest here are
S/ = (1)), DIt = (), (5.21
» = e, () 5,0 (fi(e), (5.21)
a é
S, =——C,(t,s), Dit')=———C,,(t,5). (5.22
p aap 1/( S) p( ) (Sap(t’) _/( S) ( )
From Egq. (5.7) it follows, by differentiation, that
5 =3 | ds Kl 34,64 i),
+y f ds(—~ K.t s))Tj(u(s), a). (5.23)
7 (9ap

For D/(t’) one obtains

DL =S, [ de e 5, 5, 1, ul), )

+Zf ( 5, (1) .,tSJ) j(uls), afs)).  (5.24)

In an analogous manner the following expressions for S M
and D, (t’) are obtained from Eq. (5.14),
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Sy = %: f ds' Ky (t, 5')K (s, WA, ()@ (uls'), )}

+3 [ a5 Qutuls) a)(K,-k (.5) s Kl )

P

+ K(s, 5') aa Kik(t,s’)), (5.25)

P

D)= %‘, st’ K (t, 5')K (s, s'WAL (5", £')Qu (us), ls'))

+3 [ a5 Qutui), a(s'))(K,k () Ky, s)

5
da,(t')

Ko $) 52 Kalt ). (5.26)

_9
da,(t')

Thus in the quasilinear approximation it is possible to
obtain closed expressions for { p;(¢)) and ( p,(t) p;(s)) as
well as for their sensitivity coefficients and densities in terms
of the deterministic concentrations u and of the determinis-
tic concentration response function K. Since powerful nu-
merical methods are available to obtain both # and K (see
Ref. 20) the resuits obtained in this section should prove
useful in the analysis of chemical kinetic models. They allow
for carrying out simultaneously both a sensitivity analysis
and an investigation of fluctuation phenomena without the
need of stochastic simulation in a computer.

VI. AN ILLUSTRATIVE APPLICATION

In this section a simple chemically reacting system is
studied. The sensitivity coefficients of the average concen-
trations are computed using the expressions developed in
Sec. I11. Since the average concentrations can be obtained as
explicit functions of time and of the system’s parameters it is
possible to compare the resulting sensitivity coefficients with
their true expressions found by a direct calculation. This
comparison provides a concrete example illustrating the va-
lidity of the results of Sec. IIIL.

The reaction scheme to be studied here is

k,

AS2B. (6.1)

k2
Let p; be the concentration of 4 and p, the concentration of
B. Then the matrix P( g, @) is given by

Plpa) =Ltk kool (L] 7)) 62

The equation for the concentration is

dpi i 2
7 (— Vkypy —kapa) + Y Pijlps @)f;lt),
j=1

pi0) =4, p2l0) = B, (6.3)
From Eq. (6.3) it follows that

pilt) + palt) = py(0) + p2(0). (6.4)
Thus it is useful to introduce a new variable

plt) = pit) — pi(0) = py(0) — plt). (6.5)

Then, for p(¢) one gets the stochastic differential equation
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22 — o, —ayp+ (s +ap) W), p0)=0. (66)

In Eq. (6.6), £ (¢) is a zero mean, delta correlated, Gaussian
stochastic process (i.e., white noise) which is related to the §;

in Eq. (6.3) by
£(t) = (IV2)E,(t) — &l ))- (6.7)

The parameters @, ( p = 1, 2, 3, 4) can be expressed in terms
of the initial conditions and of the rate constants
ay=k,B, — kiAo, ay=k;+kj,
as = (1/V)kdo + kBg), as=(1/V )k, — k).
Let M, (t) = ( p"(t)), then from Eq. (6.6), using Eq. (3.10)
and Eq. (4.5), one finds (n>1)

(6.8)

d = —

EMn({)_ naZMn(z)
+ n(a, y2n=1 a4>Mn_1(t)
NIELII 69

M, (0)=0.

Thus a recursion relation for the M, (¢), n»1, is obtained

M, (t)= nLl ds[(a. + 2n4~ L a4)M,,_ 1 {s)

nln — 1)

aM, , (s)]exp — na,(t — s).
(6.10)

Starting with M,(¢) = 1 all the M, (¢) can be obtained from
Eq. (6.10). The quantity of interest for obtaining the average
concentrations is

Mi(t) = (p(t)) = (/a)a, + a,/4)(1 —e™ ). (6.11)
The general expression for M, (¢) is

+

M,(t)= Y ChLe ™=, (6.12)

m=0
and a recursion relation for the C, can be obtained from Eq.
(6.10).
According to Eq. (3.12) the sensitivity coefficients of
{ p(t)) with respect to a, are determined by

St = J: d‘(ﬁ(s)§ (s )as + aspish) "2

X (81, = 82,015) + £ s + sl

% (83, + 64,P) ))
2

In Eq. (6.13), 8, is the Kronecker delta function (5, , = 1if

p =4¢,6,, = 0if g#p). Using the techniques discussed in

Sec. IV, Eq. (6.13) can be rewritten as

(6.13)

S8 = f dxfdy xas + a6, — 8,9l 9 1)
+ 485, +8u a5 + s y) gk, 1)), (6.14)
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where

gilep 1) = fds@ (5%)80x — ple oLy — plsl)),  (6.15)

gl 1) = [ (65 61 — ple oLy — ),
(6.16)
Using Eq. (B1) plus some further manipulations yields

a
E;gl(xay’ t)

a
i [(az1 —axg(x, y, t)

— s+ @) —6‘3; (s + @) g, 3, t »]

_ (;’—x 8lx —y})(a3 + )Py, t),

gilx, ¥,0)=0, (6.17)

a
Egz(x,)’: t)

= — %[(al — aX)gylx, ¥, t)

1 d
— o+ a2 (o + a) el r))]

XPy(y.t) + %ai«aa + a)20x — »Py(y, r))],
y

8%, »,0)=0. (6.18)
As for boundary conditions, both g,(x, y, ¢} and g,(x, y, )
must vanish fast enough as |x| and |y| grow large such that
all necessary integrals are finite. This, of course, is insured by
the definition of g,{x, y, ¢ )and g,(x, y, ¢ ), Egs. (6.15)and (6.16).
It is convenient now to introduce the functions 4,( y, ¢ ) and
h,(y, t) defined by

B3, 1) = (s + @y y)~ j dxixg e,y 1) (6.19)

From Egs. (6.17) and (6.18) it follows that

a3
Ehl(y!t)= —ahy(y, t)+ Py, t), hy(y,0)=0, (6.20)
D by 1)= — arhfy, 1)
at
1 d
+ ? (as + a4)’)1/2 5P1(}’: t),
h,(y,0)=0. (6.21)
Thus
hiy,t)=| dsP,y,slexp — a,it—s), (6.22)
0
1 172 0
hip, t)=—(as+a,p)"* = hy(yt) (6.23)
2 dy

Therefore, for S £ one gets
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1 a
A4 =de(5,,, =82y 463, 84, ) ‘—9;)h1(y, t).

(6.24)
The final result for S4 is
1 !
+6,, i(al + ﬂ)te —ar_ L {1 —e=™").  (6.25)
a, 4 a,

Since by definition S = (d/da,) { p(t)) itis easy to verify by
differentiation of Eq. (6.11) that Eq. (6.25} is correct. It is
straightforward to verify that Eq. (3.12) also correctly yields
the sensitivity coefficients of higher correlation functions
like ( p(¢) p(t')) for example. However, since the algebraic
work necessary for a more complete verification is rather
involved it will not be presented here.

VII. CONCLUDING REMARKS

The main result of this work is the development of a
sensitivity analysis formalism to study kinetic models de-
scribed by stochastic differential equations with multiplica-
tive and additive white noise. The formulas for the sensitivity
coefficients and densities can be generalized to be applicable
to the case of colored noise provided that the colored noise
itself can be obtained from a stochastic differential equation
driven by white noise. This is the case for two commonly
used colored noises, the Ornstein~-Uhlenbeck process®' and
the Brownian oscillator process.”

Phenomenological stochastics models of the type used
here to describe concentration fluctnations in chemically
reacting systems are usually obtained by starting from a de-
terministic description of the system and then demanding
that certain fluctuation-dissipation relations be satisfied in
order to obtain the correct form for the stochastic terms.'® In
the case of chemical kinetics the deterministic description is
provided by the rate equations derived from the mass action
law.! Thus the results obtained from any stochastic model of
chemical kinetics must coincide with those obtained from
the deterministic model whenever the latter provides a valid
description of the behavior of the chemically reacting sys-
tem. Therefore, one might argue not to bother with the study
and sensitivity analysis of stochastic models since it appears
sufficient to study the simpler deterministic model. The fal-
lacy of this statement is, of course, connected to the fact that
the deterministic model based on the mass action rate equa-
tions is not always valid. For example, if the chemical reac-
tions involve a small number of molecules inside a small
volume, as is the case for reactions in micelles, then fluctu-
ations become very important. But even in macroscopic sys-
tems there are reaction mechanisms that allow for the exis-
tence of chemical instabilities leading to the amplification of
fluctuations. !> Moreover, due to the randomness of the mo-
lecular events responsible for the chemical reactions, it is
clear that the concentrations of the chemical species must be
represented by stochastic variables. The moments of a finite
set of stochastic variables in general do not satisfy a finite,
closed set of equations. Thus the interpretation of the mass
action rate equations as a closed system of equations for the
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average concentrations shows clearly that this model ne-
glects fluctuations and cannot be expected to provide an ade-
quate description of the behavior of systems where fluctu-
ations are expected to be important.

The sensitivity analysis technique developed in this
work should enhance the stock of mathematical modelling
tools available in chemical kinetics. In particular the quasi-
linear approximation should be specially useful. It provides
a unified framework in which estimates of the magnitude of
the fluctuations can be obtained jointly with a sensitivity
analysis of both the deterministic rate equations and the fluc-
tuations themselves. In this approximation the fluctuation
induced corrections to the concentration values predicted by
the deterministic rate equations as well as concentration cor-
relation functions can be obtained, even for complex sys-
tems, without carrying out time consuming stochastic simu-
lations.

The results for the sensitivity coefficients were general-
ized to the case of time-dependent parameters. This demand-
ed the introduction of sensitivity densities which can also be
interpreted as generalized response functions. This interpre-
tation sheds light on the physical meaning of sensitivity anal-
ysis and shows that the sensitivity coefficients and densities
belong to a broad class of mathematical objects (i.e., response
functions) of considerable interest in statistical mechanics.
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APPENDIX A

A simple derivation of Novikov’s theorem can be ob-
tained by using path integral techniques (see, for example,
the Appendix of Ref. 16). For the benefit of readers not fa-
miliar with the path integral formalism we provide here a
derivation of this important result that uses only the func-
tional derivative concept.

Let Z [J] be the characteristic functional associated
with the Gaussian stochastic process £. By definition,’

Z[J] = <exp(i;fdt.lj(t )6t ))>
= exp( — % ; j drJ Xt )).

The first equality above is just the definition of Z [J], the
second is restricted to the case of white noise (i.e., a §-corre-
lated Gaussian stochastic process). For an arbitrary func-
tional H [E] it follows that

<H[§]>=H[—i%]zm

(A1)

; (A2)

J=0

that is, H [E] can be obtained by taking appropriate func-
tional derivatives of Z [J] and then setting J = 0. Thus,

.6 [ .5 ]

H =\| — H| —i—|Z1[J . {A3
(EH [E]) ( ’(sjk(s)) sy 20| ey
From Eq. (A1),
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5 5
o 5Jk(s)H[ o E]Z 7]
- iH[ _ i%](]k(s)z [31). (A4)

Defining P;(r} = — i 6/6J,(t ) and interpreting P and H [P]
as operators acting on functionals of J, the right-hand side of
Eq. (A4) can be written as

iH [P](J(s)Z [J]) = H[P], J(s) JZ [J]

+ i (s)H [P1Z[J]. (AS)
Now
[B(e), J(s)] = — i6,8( — s), (A6)
therefore,
. SH [P]
[H[P], J(s)] = l_aPk o (A7)

One obtains Eq. (A7) from Eq. (A6) in the same way that in
quantum mechanics one gets [ /( p), x] = — i#(3 f( p)/3p)

from the basic commutation relation [ p, x] = — i#,
p = — i#{d/Ix). Thus,
SH [P]
(EMIHE]) = {__ Z{ }
ScH [8)) OP(s) |- — {8/8M L) J=0
(ontel) AS)
8&(s)

This result is known as Novikov’s theorem.??

APPENDIX B

In order to obtain Eq. (4.11) (with ¢, > ¢, > ... > ¢,) one
should notice that the following identity holds'®:

g;ﬁ(x —plt)) =D(x,1)6 (x — p{t)) + R (x, p(t), &(z)), (BY)

where D (x, ¢) is the Fokker—Planck operator, defined by

Dix 1)l 1) = — 3 - | Rx, ale ) fix, )

—%zmmw»
T

d

X
ax,

(P, %, o) f(x, £ ))]. (B2)

For the remaining term in the right-hand side of Eq. (B1) one
has

R(x, p(t), &)
= = 32 (Rilple ). e ) — Ryl e Yol — pit)

1« @
- % . (P (x, aft)))

xai (P, (x, clt )5(x — plt )
Xk

- 3o (P lpl) ale (05— pir)). (B3)
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Despite its rather involved expression R (x, p(t), §(7)) has
some simple and useful properties, for example

(R (x, p(t), &) =0 (B4)

Another important property is the following. Suppose
that F [p] is a functional of p that depends only on the p,(s)
with s < ¢, then

(R (x, p(t), E(t)F[p]) =0 (B3)
The contribution from the first term in the right-hand side of

Eq. (B3} is trivial since, upon averaging, the factor in front of
8 (x — p(z)) is identically zero. Thus,

e i 8071
%, tx,att)

-- 13
X o= e, ) (5(x — plr)F (p] >)

- Z P i(x, alt ){&;(2)5(x —

Now, using Eqs. (3.10) and (4.5)
(&;(£)8(x — plz))F [p])

- _ %zk: :;_ (Pe, (X, (¢ ))8(x — plt)F [p]))

plt)F {pl)). (BS6)

_\6F [p] 6pk(s)>
+ ; f ds<5(x plt)) o) 0] (B7)
The definition of F [p] implies that F [p]/8p, (s) = O for s>¢

and Eq. (3.7) states that & p, (s)/6£;(¢t ) = Ofor ¢ > 5, therefore,
the second term in the right-hand side of Eq. (B7) vanishes.
The remaining term in the right-hand side of Eq. (B7) exactly
cancels the first term in the right-hand side of Eq. {(B6) show-
ing that Eq. (BS) is satisfied.

Introducing the Green’s function associated with the
Fokker—Planck operator, G(x, ; y, t '),

t') 4+ 8t —t")o(x —y),
(B8)

iG(x,t;y,t'):

Dx, t)G(x, ¢y,
o (x,2)G(x, 5y

lim Gix,t+¢€y,t)=

-0

Eq. (B1) can be rewritten as

8(x — pit) = [ dx' Glx, 5 X' 50(x’ — pis)

5(x —y), (B9)

+ r dt’ J' dx’ G (x,t:x",t")R (x',p(t LE(t)-
(B10)
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In Egq. (B10) 7> 5. Consider now P, (y,, t;; ...; ¥, £,) with

t,>1t,>>t,. From Eq. (4.9) one has
Py (Y1, 35 oo Yo 1) = (8(y1 — pUt)F (p(t), - p(2,))), (BL1)
where

F(p(ty), .., plt.)) = 8ly, — plto)}+6ly, — plt.)).  (B12)

Setting x = y,, = t,, and s = ¢, in Eq. (B10) and inserting
the resulting expression for § ( y, — p(t,)) in the right-hand
side of Eq. (B11) one obtains

Pn(Yl’ tl; s Yn’ tn)

= J dx' Gy, ty; X', )P, (X', 13 Yo, ty; o3 ¥as £,)-(B13)

Equation (B5) was used to arrive at Eq. (B13). Notice that the
multiple time distribution in the right-hand side of Eq. (B13)
has two identical time variables. Thus using Eq. (4.10) one
obtains Eq. (4.11).
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The Gauss and the Weingarten equations for extended objects and their

spinorization
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Giirsey’s program of geometrization and spinorization of motion of the classical point particle is
generalized to the objects with spatial extension. For this purpose, the Gauss and the Weingarten
equations in differential geometry were adopted. Since the spinorized version of the Gauss and the
Weingarten equations is much less stringent than the original equations, it is expected that it
serves to provide us with a way in which solutions are easily obtained.

PACS numbers: 11.10. — z, 11.90. 4 t, 02.40. + m

I. INTRODUCTION

The motion of the classical point particle is treated by
the Newton equation (or its relativistic version). The funda-
mental variables are the position vector of the particle and
their time evolution is described by the Newton equation. In
quantum mechanics, the behavior of a particle is described
by the Schrédinger equation (or by the Dirac equation). As
has been argued by Giirsey,' the conceptual gap between the
two different approaches may be narrowed and the compari-
son between the classical and quantum descriptions may be-
come easier, if one could introduce a spinor in classical me-
chanics.

Following the above line of reasoning, Giirsey de-
scribed a classical point particle in terms of the Frenet—Ser-
ret equation and showed that it can be represented equiv-
alently by spinor equations. The essence of Giirsey’s
spinorization lies, however, in the geometrization of the mo-
tion of a point particle in terms of a tetrad rather than a mere
spinorization of the classical particle.

The close relation between a tetrad (or a triad) and a
spinor has been exploited by many authors in different con-
texts. For instance, a number of Japanese authors recognized
the convenience of using spinor variables in constructing a
rigid sphere model of high energy particles.” As has been
discussed by us in previous occasions, the existence of a tet-
rad (or a triad) implies that of a spinor and vice versa, and the
link between the tetrad and the spinor is provided by the
Fierz identities.’

On the other hand, there has been considerable interest
in attempts to treating extended objects such as string mod-
els in high energy physics and solitons, and various interest-
ing techniques and results are being obtained.** In particu-
lar, a number of authors investigated the soliton problems
from the geometrical point of view to gain an insight into
apparently different models.*

The purpose of this paper is to present a general geomet-
rical scheme for the description of extended objects in terms
of the Gauss and the Weingarten equations and to show that
these equations can be replaced by spinor equations. This
may be considered, on the one hand, as a generalization of
Giirsey’s program mentioned earlier, it is hoped, on the oth-
er hand, that the general formalism will provide us with a
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method in which extended objects are accommodated in rel-
ativistic field theory in a natural way.

As an elementary orientation, we first review in the next
section the Frenet-Serret formula for an orbit of a point par-
ticle, and impose on it an evolution equation. The integrabi-
lity of the equations will be discussed briefly. Having geome-
trized the motion of a point particle, we show in Sec. III that
the Frenet-Serret equation and the evolution equation can
be reduced to spinor equations (three-dimensional spinor). It
is also shown that the integrability condition of the spinor
equations agrees entirely with that of the original Frenet-
Serret and the evolution equations. Section IV is devoted to a
general geometrical formalism of extended objects. In this
formalism the motion of tangent vectors of the extended ob-
jects is given by the Gauss equation whereas that of normal
vectors is given by the Weingarten equation.’ Thus, the tet-
rad formed by the tangents and the normals can be reduced
to a four-dimensional spinor. Hence, the Gauss and the
Weingarten equations can be replaced by spinor equations,
as will be shown in Sec. V. Again, the integrability condition
for the spinor equations is compatible with that of the Gauss
and the Weingarten equations, though they are not exactly
the same.

The general formalism presented in Secs. IV and V will
be illustrated in Sec. VI explicitly in the case of a string. We
shall discuss in the last section some consequences and
further problems associated with our formalism.

Il. THE FRENET-SERRET EQUATION

Let us consider a string of an arbitrary shape in three-
dimensional space. In an arbitrary point on the string, we set
up an orthogonal triad consisting of the unit tangent a'”, the
normal a?, and the binormal a®. The shape of the string is
described by the orthonormal triad satisfying the Frenet-
Serret equation

I (2.1a)
a? = — xa'V + 7_a(s)’ (2.1b)
a® = — ra® (2.1¢)

where x and 7 are the curvature and the torsion of the string,
respectively. The prime stands for the derivative with re-
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spect to the length of the string measured from a specified
point on the string, which is indicated by £ '.

We note that the Frenet-Serret equation (2.1) can be
written in the form,

oa

a_gT = wia, (2.2)
with
0 « 0
o =[ol]=| —« 0 1) (2.3)
0 —7 0

where in Eq. {2.2) the summation over j from 1 to 3 is under-
stood.
In order to describe the motion of the string, we consid-
er the equation of the form
Ja'
dE®
where £ is the time variable and ] is a matrix skew sym-
metric with respect to / and j, so that the norm and the ortho-
gonality of the triad is preserved.
Since the vector a'” should be determined uniquely from
Egs. (2.2) and (2.4), the integrability condition
9 5 9
g " ge°
must be satisfied. The square brackets in Eq. (2.5) stand for
commutator. Using the explicit form (2.3), we obtain, from
(2.5), the integrabilty condition

= wla, (2.4)

—5,| =0 (2.5)

a 12
7‘2"7 — 3?0 — el =0, (2.6a)
a 13
aag)O' — kP — 12 =0, (2.6b)
a 32
820' —at—?o— + kwy' = 0. (2.6¢)

The skew symmetric quantity &, = [@§] is so far arbitrary,
as long as it satisfies Eq. (2.6). If we take®

0 — KT I'd
. KT 0 K_p
Wy = K , (2.7)
—« 2-%X o
K

the integrability condition (2.6) becomes

K= —2'T — KT, {2.8a)
. ("__72)' + K, (2.8b)
K

It can easily be shown that Egs. (2.2) and (2.4) with (2.3) and
(2.7) are reduced to the equation*

Al = gy g, (2.9)

which is the continuum limit of the one-dimensional version
of the Heisenberg ferromagnet model with the nearest-
neighbor interactions.

We point out that the equation of motion such as (2.9),
the Frenet-Serret equation (2.2) and their integrability con-
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dition have proven to be a useful way to find a new equation.
For instance, in the example given above, the integrability
condition {2.8) leads to a nonlinear Schrédinger equation

= —y" =Y. (2.10)
To show that Eq. (2.8} is equivalent to {2.10), we put, follow-
ing Hasimoto,

Y=« exp(ifg dg¢'’ T]. (2.11)
Then, we have

i¢={i:;—f§‘d§l+]¢. (2.12)
Upon using (2.8b), Eq. (2.12) becomes

W={ =2tk /i —iT — K"/ + 7 — WP}y (2.13)
On the other hand, from Eq. (2.11)

Y = (k'/k + i), (2.14)

Y = (K'/k + i)Y + (& /x + iT) Y,

= (k" /Kk + it + 2itK' /5 — Y. (2.15)

Combining (2.15) and (2.13), we arrive at Eq. (2.10).

IIl. SPINORIZATION AND INTEGRABILITY CONDITION

As has been discussed in previous occasions’ the triad
a'”, a®, and a® implies the existence of a two-component
spinor indicated by ¢. If we define the charge conjugation of
¢ by

¢ ‘=06 (3.1)
where o, is the second member of the Pauli spin matrices,

and * the complex conjugate, then the triad can be represent-
ed by

(1)

al'=J,/J, (3.2a)
d?=(R; + R ¥)/2J, (3.2b)
ad¥=(R, — R *)/2iJ, (3.2¢)
with
J=(¢g), (3.3a)
Ji=(¢0:4), (3.3b)
R=(¢°0,4), (3.3¢)
R*=(¢'0,69). (3.3d)

Due to the Fierz identities

(Ca)op(@5)sy = % S Tr (04060305 [(0c)15(Tp)aps

(3.4)
where
04,05 etc. =1,0,,0,,0,, (3.5)
the quantities defined in (3.3) satisfy the relations
JJ; = %Riii =Jz» (3'6a)
JR, = i€ J;R,, (3.6b)
R.R, +RR, =2(6,J*—JJ), (3.6c)

which ensure orthonormality and completeness of the triad
(3.2). Noting the relations
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49 =0, (3.7a)
9 =94, (3.7b)
$0d = —g'o., (3.7¢)

we can spinorize the Frenet—Serret equation (2.2) with (2.3)
as
dé i K
—= =T+ ¢
ge! 2 ¢ 2 ¢

09" _ 1 e K
e 2 ¢

(3.8a)

(3.8b)

The evolution equation (2.4) can be spinorized as

S = R ol + g

a¢ ] 23¢

(3.9a)

S 2
To demonstrate that Eq. (3.8) can reproduce the Frenet-
Serret equation (2.2), we first calculate, using (3.8a) and its
conjugate

(w — iwy)p. (3.9b)

0 g 08 g gy OB
=éT¢+¢_%T¢*¢=o, (3.10)

where the relation (3.7a) has been used. Similarly, we obtain

“(%TWT ,¢)_—T¢ U¢——7'¢ ‘.

L otob+ Ludose
+2K¢ U,¢+2K¢ 01¢
=k{(¢0,8) + (70,6172

Dividing this equation by J and using Eq. (3.10), we arrive at
the first equation (2.1a). The other equations (2.1b) and (2.1¢)
can be obtained in the same fashion. Equations (3.9) can be
shown to reproduce the evolution equation (2.4) in exactly
the same way.

To investigate the integrability condition of Egs. (3.8)
and (3.9), we define two 2 X 2 matrices

(3.11)

D=+ ( 7 "(), (3.12a)
2 \—ik —1T
~ w23 iw12 + iwl}
oozl( o (23" ° )), (3.12b)
2 \ —ilw) —in)?) —w}
and rewrite the above equations as
i9%% _5y (3.13a)
dE!
.Y A
i 260 =0,Y, (3.13b)
where
Y= (¢ C). (3.14)
¢

The integrability condition of Egs. (3.13) can be written sim-
ply as
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[i~a——f)1,t d —_()]
oE! 9E°
. 8 -~ . a ﬁ AA
_16'50 ﬂl—l??é._] 0+[ﬂ1’00]=0- (315)

On substituting the explicit form (3.12), we obtain the rela-
tion (2.6), which was established for the vector equations
(2.2) and (2.4). Thus, we see that the integrability condition of
the spinor equations is identical to that of the original vector
equations.

IV. THE GAUSS AND THE WEINGARTEN EQUATIONS

We generalize the above consideration to extended ob-
jects in the 3 4+ 1-dimensional Minkowski space, represent-
ed by x, (1 = 1,2,3,4) with x, = jt. Let us consider an ex-
tended object of m + 1 dimensions in the Minkowski space.
The spatial extension of the object is expressed in terms of
coordinates & ¢ (@ = 1,...,m) with 0<m <3, whereas the tem-
poral extension is represented by £°. A point Y, on the ex-
tended object is then a function of £, i.e.,

Ve =y,6% (@a=0,1,.m). (4.1)

We define the vectors

B,.= Ky , (4.2)

ot
which are tangents of the extended object and satisfy
Wy Wu _
naBub = aé_a aé_b=gab‘ (4‘3)

Assuming £ ° to be a timelike variable, we have

800 <0. (4.4)

We also consider the normals N, (P=m + 1,...,3) at the
point y,, satisfying

B,uaNluP = 0! (45)

NypN,g =08pp. (4.6)
For the tangent vectors, the Gauss equation

dB,,

5 5*,, = {$a}Bac + HppaNsp (4.7)
holds where
1 0%0c | O8be  O8ba
(o )=—g" © 4+ b., _ ”e (4.8)
a’ I I

is the Christoffel symbol and H ,, is the second fundamental
tensor with respect to the normal N, .

On the other hand, the normal N, , satisfies the Wein-
garten equation

ON,»p

— = —Hp,"B;, + Lpoy N0 (4.9)
73
where L p,, is skew with respect to Pand @, i.e.,
Lygs + Lop, =0. (4.10)

The Gauss equation (4.7) and the Weingarten equation (4.9)
are the generalization of the evolution equation when b =0
and of the Frenet-Serret equation when b 0. These equa-
tions determine the shape of the extended object as long as
the coefficients {5, }, Hp,, and Lpy, are given.
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Of course, for these equations to be compatible, integra-
bility conditions must be satisfied. They are known as the
Gauss, Codazzi, and Ricci equations which we shall not
write down here explicitly.

Before we proceed further it is interesting to see some
special cases. If we consider a point particle moving in the
Minkowski space and take the proper time as £ °, the Gauss
equation (4.7) can be arranged as

‘;Bg‘: = — KNy, (4.11)
and the Weingarten equation (4.9) as

B‘Z = — KBy + KNy, (4.12a)

ddj?oz = — 1N, + KNy, (4.12b)

d{gﬁj = — 5N, (4.12¢)

The unit tangent B, , (timelike) and the three spacelike unit
normals N, (P = 1,2,3) satisfy the orthonormalization rela-
tion

B =5, (8.13)
where a and B run from 1 to 4, and

h9=iB,,, (4.14a)

hLP)ENMP (P=12,3). (4.14b)

Equation (4.11) and (4.12) are nothing but the four-dimen-
sional generalization of the Frenet-Serret formula put for-
ward by Synge.® In this case, the problem of integrability
does not simply arise, since there is only one independent
variable involved. We note that Eqs. (4.11) and (4.12) can be
written as

dh@
d§‘:’ =wfh? (@B =1234), (4.15)
with
0 K 0 ik,
—K 0 « O
ve=[a’] =| e o o (4.16)

— Ik, 0O 0 O

The spinorization of the vector equation of the form given in
(4.15) is straightforward. Introducing a four-component
spinor ¢, the tetrad 4 ¥’ (@ = 1,2,3,4) can be constructed as

R =(R, +R,)/2J+ %), (4.17a)
hi=(R, —R,)/2J% +J5)'7, (4.17b)
h=Js, /U +J3)"% (4.17¢)
R =ihQ =il /I +T2)?, (4.17d)
where
J =y, (4.18a)
Js = diys, (4.18b)
J. =iy, ¢, (4.18¢)
Isu = iysy, ¥, (4.18d)
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R, =iy, ¥, (4.18¢)

R, =iy, ¥ (4.18f)
The ¢* is the charge conjugation of ¥ defined by

¥ = CY, (4.19)
with

Cy,C=—7., (4.20a)

C=-C" (4.20b)

Due to the Fierz constraint conditions, orthogonality and
completeness of the four vectors 4 hold, as has been dis-
cussed previously.® Using these relations, the spinor equa-
tions

= — i, + K3y + dky + avsiy, (4.21a)

i = — ik, + K375 — Yo — ays)Yf, (4.21b)
with an arbitrary real number q, are shown to reproduce the
four-dimensional Frenet-Serret equation (4.15) with (4.16).
The calculation is almost identical with the nonrelativistic
case, hence we shall not repeat it here.

Notice that Eqgs. (4.21) agree with those obtained by
Giirsey when the real constant a is put equal to zero.'

V. SPINORIZATION OF THE GAUSS AND THE
WEINGARTEN EQUATIONS

For the purpose of spinorization of the Gauss and the
Weingarten equations (4.7} and {4.9), it is convenient to re-
write them first in terms of the orthonormal tetrad / ' intro-
duced earlier, and to bring them into the form

@)

CZ;’; =wfh?), (5.1)
with

0P + af* =0, (5.2)
which ensures that the condition

hOnB) =6, (5.3)

is always preserved. The actual calculation to bring the
Gauss and the Weingarten equations into the form (5.1) is
tedious, but can be carried out in a straightforward manner
by using the Gram—Schmidt procedure. We shall perform an
explicit calculation later in the case of a string moving in the
Minkowski space.

The spinorization of the equation of the form (5.1) is
quite straightforward. Consider a four-component spinor ¢
and its charge conjugation ¢, and set up their equations as

.o 1 34
t aga - 2 {wa + (wa + 170)7’5}¢
— o + i0}) + (@5 + i) ys) (5.4a)
and
o= o ok o) + o — i}y
— {{w + (@3 — s} o (5.4b)

The Pauli conjugate equation of these can be obtained if we
recall that the index 4 always carries the imaginary unit
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i=y — 1. The quantity 7, is an arbitrary real number.
Toshow that Egs. (5.4) agree with (5.1) with the identifi-
cation (4.17), we first calculate, using (5.4a) and its conjugate,

aJ

= —n,Js 5.5
EYE Nas (5.5a)
If we use (5.4b) and its conjugate we obtain
s _ .7, (5.5b)
dE°
which, together with (5.5a), gives
9 _urpiy=o (5.6)

ace
Again combining (5.4a) and its conjugate, we easily establish
. 4 =
1 @Jp = (U:l(R# + R#)/Z
+ ¥R, —R,)/2i

+0¥s,. (5.7a)

]

0;2 + (024 + Na )75

0e=—
2 ( — (@} — i) — (@2 — iw])ys

Then, Egs. (5.4) can be put into the form

9 i
l@'—ﬂa]w—o, (5.103.)
where
_(?
W= (r/f) (5.10b)

Hence, the integrability condition of Eq. (5.10) reads as

a J

i—02, —i— 0, +[2,,2,]=0. 5.11)
2 e [ 5] (
Observe t